cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A147520 a(n) = Smallest number x such that Euler Polynomial x^2 + x + 41 is divisible by 41^n.

Original entry on oeis.org

0, 40, 1721, 139563, 14268368, 1636255182, 6386359423, 1953929098233, 149759650255065, 1814531956108700, 243422399538851918, 9662500171353620019, 122479951673184550424, 12148820281768361731597, 177497315692809432279207, 14173382150616650630276616, 1225594969529024683212496795
Offset: 1

Views

Author

Artur Jasinski, Nov 06 2008

Keywords

Comments

For values of x^2 + x + 41, see A147521. For values (x^2 + x + 41)/(41^n), see A147522.
By Hensel's lemma, x^2 + x + 41 has two roots mod 41^n; their sum == -1 mod 41^n. Thus 0 <= a(n) < 41^n/2. - Robert Israel, Apr 09 2018

Crossrefs

Programs

  • Maple
    f:= n -> min(map(t -> rhs(op(t)), [msolve(x^2+x+41, 41^n)])):
    map(f, [$1..30]); # Robert Israel, Apr 09 2018
  • Mathematica
    a = {}; Do[x = 0; While[Mod[x^2 + x + 41, 41^n] != 0, x++ ]; AppendTo[a,x];Print[{n, x, x^2 + x + 41, (x^2 + x + 41)/41^n}], {n, 1, 6}];a (* Artur Jasinski *)

Extensions

More terms from Robert Israel, Apr 09 2018

A147522 Minimal number such that a(n)*41^n is of the form x^2 + x + 41.

Original entry on oeis.org

1, 1, 43, 6893, 1757233, 563636267, 209420753, 478130829203, 68506995922171, 245296117830341, 107670977147002963, 4137830996824703141, 16215855859012574521, 3891295582697539371727, 20259360308241533953897, 3150687184319350782852593, 574603643148719626677940181
Offset: 1

Views

Author

Artur Jasinski, Nov 06 2008

Keywords

Comments

For values x see A147520. For x^2 + x + 41 values see A147521.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[x = 0; While[Mod[x^2 + x + 41, 41^n] != 0, x++ ]; AppendTo[a,(x^2 + x + 41)/41^n];Print[{n, x, x^2 + x + 41, (x^2 + x + 41)/41^n}], {n, 1, 6}]; a

Extensions

a(7)-a(17) from Hugo Pfoertner, Jan 12 2019
Showing 1-2 of 2 results.