A147529 Numbers n such that there exists x in N : (x+1)^3 - x^3 = 103*n^2.
8827, 1133434915879903, 145539221541371657392445143, 18688029378753350610679552570834161667, 2399644840493193509137754319007833077692312755187, 308127477959355126566155341338642382333110448233345362623463
Offset: 1
Examples
a(1)=8827 because the first relation is (51721+1)^3 - 51721^3 = 103*8827^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..50
- Index entries for linear recurrences with constant coefficients, signature (128405450990,-1).
Programs
-
GAP
a:=[8827,1133434915879903];; for n in [3..20] do a[n]:=128405450990*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 12 2020
-
Magma
I:=[8827,1133434915879903]; [n le 2 select I[n] else 128405450990*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 12 2020
-
Maple
seq(coeff(series(8827*x*(1-x)/(1-128405450990*x+x^2), x, n+1), x, n), n = 1..20); # G. C. Greubel, Jan 12 2020
-
Mathematica
LinearRecurrence[{128405450990,-1}, {8827,1133434915879903}, 20] (* G. C. Greubel, Jan 12 2020 *)
-
PARI
Vec(8827*x*(1-x)/(1-128405450990*x+x^2) + O(x^20)) \\ Colin Barker, Oct 21 2014
-
Sage
def A147529_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 8827*x*(1-x)/(1-128405450990*x+x^2) ).list() a=A147529_list(20); a[1:] # G. C. Greubel, Jan 12 2020
Formula
a(n+2) = 128405450990*a(n+1) - a(n).
G.f.: 8827*x*(1-x) / (1 - 128405450990*x + x^2). - Colin Barker, Oct 21 2014
Extensions
Editing and a(6) from Colin Barker, Oct 21 2014