A147540 Numbers whose binary representation is the concatenation of 2n-1 digits 1, n digits 0 and 2n-1 digits 1.
5, 231, 7967, 260223, 8372735, 268306431, 8588894207, 274869551103, 8796026044415, 281474440364031, 9007194961870847, 288230341800361983, 9223371762010423295, 295147902980463788031, 9444732948147641253887
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..660
Crossrefs
Cf. A138826.
Programs
-
GAP
List([1..20], n-> 2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1); # G. C. Greubel, Jan 12 2020
-
Magma
[2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1: n in [1..20]]; // G. C. Greubel, Jan 12 2020
-
Maple
seq( 2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1, n=1..20); # G. C. Greubel, Jan 12 2020
-
Mathematica
Table[FromDigits[Join[Table[1, {2n-1}], Table[0, {n}], Table[1, {2n-1}]], 2], {n,15}] (* Stefan Steinerberger, Nov 11 2008 *)
-
PARI
vector(20, n, 2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1) \\ G. C. Greubel, Jan 12 2020
-
Sage
[2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1 for n in (1..20)] # G. C. Greubel, Jan 12 2020
Formula
From R. J. Mathar, Nov 09 2008: (Start)
a(n) = 2^(5*n-2) - 2^(3*n-1) + 2^(2*n-1) - 1.
G.f.: x*(5 +6*x -128*x^2 +768*x^3)/((1-x)*(1-4*x)*(1-8*x)*(1-32*x)). (End)
Extensions
More terms from R. J. Mathar and Stefan Steinerberger, Nov 11 2008
Comments