cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147545 Primes of the form p*2^k+1 with k>0 and p=1 or p in this sequence.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 83, 89, 97, 107, 113, 137, 167, 179, 193, 227, 233, 257, 353, 359, 389, 449, 467, 641, 719, 769, 773, 857, 929, 1097, 1283, 1409, 1433, 1439, 1553, 1697, 1889, 2657, 2819, 2879, 3089, 3329, 3593, 3617, 3779, 5639
Offset: 1

Views

Author

T. D. Noe, Nov 07 2008

Keywords

Comments

This sequence starts like A074781 but grows much faster. Observe that there can be large differences between consecutive terms. Can it be shown that there is always such a prime between consecutive powers of 2? Or that this sequence is infinite? By theorem 1 of the Noe paper, this sequence is a subsequence of A135832, primes in Section I of the phi iteration.
From Antti Karttunen, Apr 19 2020: (Start)
Sequence can be considered as a generalization of Fermat primes, A019434, which is a subsequence of this sequence.
All terms with binary weight k (A000120, at least 2 for these terms) can be found as a subset of primes found on the row k-1 of array A334100. E.g. primes with weight 2 are Fermat primes (A019434), those with weight 3 are A334092 (which doesn't contain any other primes), those with weight 4 are in A334093 (among also other kind of primes), those with weights 5, 6, 7 are included as (proper) subsets in A334094, A334095 and A334096 respectively. (End)

Crossrefs

Subsequence of A074781, and of A135832.
Subsequences: A019434, A334092 (including A039687, A050526, A300407).

Programs

  • Mathematica
    nn=2^13; t={1}; i=1; While[q=t[[i]]; k=1; While[p=1+q*2^k; p
    				
  • PARI
    A000265(n) = (n>>valuation(n,2));
    isA147454(n) = ((n>2)&&isprime(n)&&((1==(n=A000265(n-1)))||isA147454(n))); \\ Antti Karttunen, Apr 19 2020

Formula

A329697(a(n)) = A000120(a(n)) - 1. - Antti Karttunen, Apr 19 2020