cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147559 Result of using the perfect squares as coefficients in an infinite polynomial series in x and then expressing this series as (1+a(1)x)(1+a(2)x^2)(1+a(3)x^3)...

Original entry on oeis.org

1, 4, 5, 11, -6, -22, -4, 155, 16, -182, -158, 376, 56, -1456, 680, 23155, -4966, -28674, 6132, 117946, 15792, -415426, -162814, 512550, 333904, -4231332, 235968, 15171332, -5259270, -68578566, 15199212, 736983115, -4403208, -1097465342
Offset: 1

Views

Author

Neil Fernandez, Nov 07 2008

Keywords

Examples

			From the perfect squares, construct the series 1+x+4x^2+9x^3+16x^4+25x^5+... a(1) is always the coefficient of x, here 1. Divide by (1+a(1)x), i.e. here (1+x), to get the quotient (1+a(2)x^2+...), which here gives a(2)=4. Then divide this quotient by (1+a(2)x^2), i.e. here (1+4x^2), to get (1+a(3)x^3+...), giving a(3)=5.
		

Crossrefs

Programs

  • Mathematica
    terms = 34; sol = {a[1] -> 1}; Do[sol = Append[sol, Solve[ SeriesCoefficient[ x*(1+x)/(1-x)^3 - (Product[1+a[k]*x^k, {k, 1, n}] /. sol), {x, 0, n}] == 0][[1, 1]]], {n, 2, terms}];
    Array[a, terms] /. sol (* Jean-François Alcover, Jun 20 2017 *)

Formula

Product_{k>=1} (1+a(k)*x^k) = 1 + Sum_{k>=1} k^2*x^k. - Seiichi Manyama, Jun 24 2018

Extensions

Terms from a(11) on corrected by R. J. Mathar, Nov 11 2008