cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A147654 Result of using the positive integers 1,2,3,... as coefficients in an infinite polynomial series in x and then expressing this series as Product_{k>=1} (1+a(k)x^k).

Original entry on oeis.org

1, 2, 1, 3, 0, -2, 0, 9, 0, -6, 0, 4, 0, -18, 0, 93, 0, -54, 0, 72, 0, -186, 0, 232, 0, -630, 0, 1020, 0, -2106, 0, 10881, 0, -7710, 0, 13824, 0, -27594, 0, 49440, 0, -97902, 0, 191844, 0, -364722, 0, 590800, 0, -1340622, 0, 2656920, 0, -4918482, 0, 9791784, 0, -18512790
Offset: 1

Views

Author

Neil Fernandez, Nov 09 2008

Keywords

Examples

			From the positive integers 1,2,3,..., construct the series 1+x+2x^2+3x^3+4x^4+... a(1) is always the coefficient of x, here 1. Divide by (1+a(1)x), i.e. here (1+x), to get the quotient (1+a(2)x^2+...), which here gives a(2)=2. Then divide this quotient by (1+a(2)x^2), i.e. here (1+2x^2), to get (1+a(3)x^3+...), giving a(3)=1.
		

Crossrefs

Formula

Product_{k>=1} (1+a(k)*x^k) = 1 + Sum_{k>=1} k*x^k. - Seiichi Manyama, Jun 24 2018

Extensions

More terms from Seiichi Manyama, Jun 23 2018

A147880 Expansion of Product_{k > 0} (1 + A005229(k)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 21, 30, 50, 75, 110, 169, 249, 361, 539, 757, 1076, 1583, 2207, 3121, 4415, 6184, 8468, 11775, 16274, 22314, 30601, 41745, 56412, 77008, 103507, 138383, 186928, 249855, 333375, 443898, 588402, 778276, 1031126, 1356945, 1780645
Offset: 0

Views

Author

Roger L. Bagula, Nov 16 2008

Keywords

Examples

			From _Petros Hadjicostas_, Apr 10 2020: (Start)
Let f(m) = A005229(m). Using the strict partitions of each n (see A000009), we get
a(1) = f(1) = 1,
a(2) = f(2) = 1,
a(3) = f(3) + f(1)*f(2) = 2 + 1*1 = 3,
a(4) = f(4) + f(1)*f(3) = 3 + 1*2 = 5,
a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 3 + 1*3 + 1*2 = 8,
a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 4 + 1*3 + 1*3 + 1*1*2 = 12,
a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 5 + 1*4 + 1*3 + 2*3 + 1*1*3 = 21. (End)
		

Crossrefs

Programs

  • Mathematica
    (*A005229*) f[n_Integer?Positive] := f[n] = f[ f[n - 2]] + f[n - f[n - 2]]; f[0] = 0; f[1] = f[2] = 1;
    P[x_, n_] := P[x, n] = Product[1 + f[m] *x^m, {m, 0, n}];
    Take[CoefficientList[P[x, 45], x], 45] (* Program simplified by Petros Hadjicostas, Apr 13 2020 *)
  • PARI
    \\ here B(n) is A005229 as vector.
    B(n)={my(a=vector(n, i, 1)); for(n=3, n, a[n] = a[a[n-2]] + a[n-a[n-2]]); a}
    seq(n)={my(v=B(n)); Vec(prod(k=1, n, 1 + v[k]*x^k + O(x*x^n)))} \\ Andrew Howroyd, Apr 10 2020

Formula

G.f.: Product_{k > 0} (1 + A005229(k)*x^k).
a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = A005229(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n.

Extensions

Various sections edited by Joerg Arndt and Petros Hadjicostas, Apr 10 2020

A147871 Expansion of Product_{k > 0} (1 + A147665(k)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 10, 15, 24, 37, 49, 73, 105, 142, 208, 294, 391, 538, 752, 988, 1359, 1812, 2410, 3232, 4270, 5598, 7454, 9721, 12639, 16625, 21445, 27649, 35793, 46235, 59141, 76215, 96975, 123262, 157671, 199625, 252591, 319792, 403262, 507682
Offset: 0

Views

Author

Roger L. Bagula, Nov 16 2008

Keywords

Examples

			From _Petros Hadjicostas_, Apr 11 2020: (Start)
Let f(m) = A147665(m). Using the strict partitions of each n (see A000009), we get
a(1) = f(1) = 1,
a(2) = f(2) = 1,
a(3) = f(3) + f(1)*f(2) = 2 + 1*1 = 3,
a(4) = f(4) + f(1)*f(3) = 2 + 1*2 = 4,
a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 3 + 1*2 + 1*2 = 7,
a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 3 + 1*3 + 1*2 + 1*1*2 = 10,
a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 3 + 1*3 + 1*3 + 2*2 + 1*1*2 = 15. (End)
		

Crossrefs

Programs

  • Mathematica
    (*A147665*) f[0] = 0; f[1] = 1; f[2] = 1; f[n_] := f[n] = f[f[n - 1]] + If[Mod[ n, 3] == 0, f[f[n/3]], If[Mod[n, 3] == 1, f[f[(n - 1)/3]], f[n - f[(n - 2)/3]]]];
    P[x_, n_] := P[x, n] = Product[1 + f[m]*x^m, {m, 0, n}];
    Take[CoefficientList[P[x, 45], x], 45] (* Program simplified by Petros Hadjicostas, Apr 13 2020 *)

Formula

a(n) = [x^n] Product_{k > 0} (1 + A147665(k)*x^k).
a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = A147665(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n. - Petros Hadjicostas, Apr 11 2020

Extensions

Various sections edited by Petros Hadjicostas, Apr 11 2020

A147869 Expansion of Product_{k>0} (1 + A004001(k)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 11, 17, 25, 41, 59, 86, 125, 180, 263, 382, 536, 738, 1073, 1466, 2028, 2841, 3889, 5275, 7211, 9800, 13249, 17860, 23948, 31921, 42864, 56802, 75115, 99788, 131239, 172870, 226789, 296404, 386745, 504939, 655227, 849628, 1101270
Offset: 0

Views

Author

Roger L. Bagula, Nov 16 2008

Keywords

Examples

			From _Petros Hadjicostas_, Apr 11 2020: (Start)
Let f(m) = A004001(m). Using the strict partitions of each n (see A000009), we get
a(1) = f(1) = 1,
a(2) = f(2) = 1,
a(3) = f(3) + f(1)*f(2) = 2 + 1*1 = 3,
a(4) = f(4) + f(1)*f(3) = 2 + 1*2 = 4,
a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 3 + 1*2 + 1*2 = 7,
a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 4 + 1*3 + 1*2 + 1*1*2 = 11,
a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 4 + 1*4 + 1*3 + 2*2 + 1*1*2 = 17. (End)
		

Crossrefs

Programs

  • Mathematica
    f[0] = 0; f[1] = 1; f[2] = 1; f[n_] := f[n] = f[f[n - 1]] + f[n - f[n - 1]];
    P[x_, n_] := P[x, n] = Product[1 + f[m]*x^m, {m, 0, n}];
    Take[CoefficientList[P[x, 45], x], 45]

Formula

a(n) = [x^n] Product_{k > 0} (1 + A004001(k)*x^k).
a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = A004001(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n. - Petros Hadjicostas, Apr 11 2020

Extensions

Various sections edited by Petros Hadjicostas, Apr 11 2020

A316083 Product_{k>=1} (1 + a(k)*x^k) = Sum_{k>=0} (k*x)^k.

Original entry on oeis.org

1, 4, 23, 233, 2800, 42832, 763220, 15761709, 366711200, 9537738596, 273549419552, 8587897407548, 292755986184548, 10773140836162944, 425587704331945152, 17966341563465800813, 807152054953801845760, 38451432814472749509872, 1936082850634342992601636
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2018

Keywords

Examples

			(1+x)*(1+4*x^2)*(1+23*x^3)*(1+233*x^4)* ... = 1 + x + 4*x^2 + 27*x^3 + 256*x^4 + ... .
		

Crossrefs

Formula

a(n) ~ n^n. - Vaclav Kotesovec, Jun 18 2019

A316086 Product_{k>=1} 1/(1 - a(k)*x^k) = 1 + Sum_{k>=1} k^2*x^k.

Original entry on oeis.org

1, 3, 5, -2, -6, -35, -4, 8, 16, -62, -158, -1149, 56, 556, 680, -1566, -4966, 3544, 6132, 20268, 15792, -75194, -162814, -1246153, 333904, 805112, 235968, -2775034, -5259270, 7160120, 15199212, 25457976, -4403208, -119142438, -161039518, 211525304, 635914664
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2018

Keywords

Examples

			1/((1-x)*(1-3*x^2)*(1-5*x^3)*(1+2*x^4)* ... ) = 1 + x + 4*x^2 + 9*x^3 + 16*x^4 + ... .
		

Crossrefs

A359265 Product_{n>=1} (1 + a(n) * x^n) = 1 + Sum_{n>=1} n^3 * x^n.

Original entry on oeis.org

1, 8, 19, 45, -72, -224, -72, 3465, 1656, -4752, -31248, -440, 62064, 415008, 936432, 6776793, -16454232, -24983784, 74804904, 468856296, 236519784, -2495390904, -8714625696, -8228470832, 62274531168, 155889061848, -47291852448, -1334769988176, -4304113760232
Offset: 1

Views

Author

Seiichi Manyama, Dec 28 2022

Keywords

Crossrefs

Programs

  • Maple
    S:= 1 + x*(x^2 + 4*x + 1)/(x - 1)^4:
    for n from 1 to 30 do
      SS:= series(S,x,n+1);
      A[n]:= coeff(SS,x,n);
      S:= S/(1+A[n]*x^n);
    od:
    seq(A[i],i=1..30); # Robert Israel, Dec 28 2022

A359407 Product_{n>=1} (1 + a(n) * x^n) = 1 + Sum_{n>=1} (n * (n + 1) / 2) * x^n.

Original entry on oeis.org

1, 3, 3, 7, -1, -8, -3, 48, 1, -39, -6, 34, -25, -293, 24, 2649, -35, -2104, -239, 3387, 323, -15322, -182, 27551, -2477, -121985, 3663, 275053, -360, -942231, -26801, 8245538, 40690, -7506845, 11479, 19149901, -297030, -61205072, 442870, 158934665, 284075, -490800388, -3338212
Offset: 1

Views

Author

Seiichi Manyama, Dec 30 2022

Keywords

Crossrefs

A147879 Expansion of Product_{k>=1} (1 + x^k*A005185(k)).

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 21, 29, 49, 73, 105, 162, 236, 338, 502, 706, 984, 1441, 1998, 2800, 3934, 5472, 7407, 10210, 14053, 19066, 25986, 35134, 47010, 63739, 85008, 112610, 150861, 200133, 264838, 349587, 459970, 602763, 792220, 1034136, 1345530
Offset: 0

Views

Author

Roger L. Bagula, Nov 16 2008

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_Integer?Positive] := f[n] = f[n - f[n - 1]] + f[n - f[n - 2]]; f[0] = 0; f[1] = f[2] = 1; (* A005185 *)
    nmax = 41; CoefficientList[Series[Product[(1 + f[k] * x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Georg Fischer, Dec 10 2020 *)
  • PARI
    \\ here B(n) is A005185 as vector.
    B(n)={my(A=vector(n, k, 1)); for(k=3, n, A[k]= A[k-A[k-1]]+ A[k-A[k-2]]); A}
    seq(n)=my(v=B(n)); {Vec(prod(k=1, #v, 1 + x^k*v[k] + O(x*x^n)))} \\ Andrew Howroyd, Dec 10 2020

Extensions

Definition corrected by Georg Fischer, Dec 10 2020
Showing 1-9 of 9 results.