cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A147953 Expansion of Product_{k > 0} (1 + f(k)*x^k), where f(n) = A147952(n).

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 9, 14, 22, 32, 43, 61, 89, 118, 167, 235, 312, 417, 572, 748, 1006, 1326, 1744, 2283, 2982, 3878, 5048, 6518, 8355, 10786, 13727, 17436, 22173, 28250, 35561, 45008, 56651, 70818, 88992, 111280, 138431, 172284, 214019, 265166, 328127
Offset: 0

Views

Author

Roger L. Bagula, Nov 17 2008

Keywords

Crossrefs

Programs

  • Mathematica
    f[0] = 0; f[1] = 1; f[2] = 1;
    f[n_] := f[n] = f[f[n - 2]] + If[Mod[n, 3] == 0,f[f[n/3]], If[Mod[n, 3] == 1, f[f[(n - 1)/3]], f[n - f[(n - 2)/3]]]];
    P[x_, n_] := P[x, n] = Product[1 + f[m] x^m, {m, 0, n}];
    Take[CoefficientList[P[x, 45], x],45]
    (* Program edited and corrected by Petros Hadjicostas, Apr 12 2020 *)

Formula

a(n) = [x^n] Product_{k > 0} (1 + f(k)*x^k), where f(1) = f(2) = 1, and for m >= 3, f(m) = f(f(m-2)) + r(m), where r(m) = f(f(floor(m/3)) when m == 0 or 1 (mod 3) and = f(m - f(floor(m/3))) when m == 2 (mod 3).

Extensions

Various sections edited by Petros Hadjicostas, Apr 12 2020

A147879 Expansion of Product_{k>=1} (1 + x^k*A005185(k)).

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 21, 29, 49, 73, 105, 162, 236, 338, 502, 706, 984, 1441, 1998, 2800, 3934, 5472, 7407, 10210, 14053, 19066, 25986, 35134, 47010, 63739, 85008, 112610, 150861, 200133, 264838, 349587, 459970, 602763, 792220, 1034136, 1345530
Offset: 0

Views

Author

Roger L. Bagula, Nov 16 2008

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_Integer?Positive] := f[n] = f[n - f[n - 1]] + f[n - f[n - 2]]; f[0] = 0; f[1] = f[2] = 1; (* A005185 *)
    nmax = 41; CoefficientList[Series[Product[(1 + f[k] * x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Georg Fischer, Dec 10 2020 *)
  • PARI
    \\ here B(n) is A005185 as vector.
    B(n)={my(A=vector(n, k, 1)); for(k=3, n, A[k]= A[k-A[k-1]]+ A[k-A[k-2]]); A}
    seq(n)=my(v=B(n)); {Vec(prod(k=1, #v, 1 + x^k*v[k] + O(x*x^n)))} \\ Andrew Howroyd, Dec 10 2020

Extensions

Definition corrected by Georg Fischer, Dec 10 2020

A147982 Expansion of Product_{k > 0} (1 + f(k)*x^k), where f(k) = A147952(A004001(k)).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 8, 11, 16, 20, 28, 38, 50, 69, 92, 120, 154, 203, 261, 338, 437, 559, 710, 907, 1146, 1444, 1829, 2291, 2863, 3593, 4457, 5539, 6882, 8503, 10501, 12931, 15861, 19466, 23854, 29125, 35520, 43279, 52557, 63735, 77358, 93472, 112885
Offset: 0

Views

Author

Roger L. Bagula, Nov 18 2008

Keywords

Crossrefs

Programs

  • Mathematica
    (* A004001 *) g[0] = 0; g[1] = 1; g[2] = 1; g[n_] := g[n] = g[g[n - 1]] + g[n - g[n - 1]];
    (*A147952*) f[0] = 0; f[1] = 1; f[2] = 1; f[n_] := f[n] = f[f[n - 2]] + If[Mod[n, 3] == 0, f[f[n/3]], If[Mod[n, 3] ==1, f[f[(n - 1)/3]], f[n - f[(n - 2)/3]]]];
    P[x_, n_] := P[x, n] = Product[1 + f[g[m]]*x^m, {m, 0, n}];
    Take[CoefficientList[P[x, 45], x], 45] (* Program simplified and corrected by Petros Hadjicostas, Apr 11 2020 using code from A147869 *)

Formula

a(n) = [x^n] Product_{k > 0} (1 + f(k)*x^k), where f(k) = A147952(A004001(k)).

Extensions

Various sections edited by Petros Hadjicostas, Apr 11 2020

A152006 Expansion of Product_{k > 0} (1 + f(k)*x^k), where f(1) = 1 and f(m) = prime(m-1) for m >= 2.

Original entry on oeis.org

1, 1, 2, 5, 8, 18, 34, 63, 102, 203, 336, 589, 999, 1675, 2799, 4768, 7561, 12224, 20513, 31724, 51621, 81976, 128560, 199192, 312536, 482806, 744847, 1147952, 1755931, 2649474, 4051413, 6069450, 9105323, 13747364, 20335077, 30508629, 45198631
Offset: 0

Views

Author

Roger L. Bagula, Nov 19 2008

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] = If[n < 2, n, Prime[n - 1]];
    P[x_, n_] := P[x, n] = Product[1 + f[m]*x^m, {m, 0, n}];
    Take[CoefficientList[P[x, 37], x],37]
    (* Program edited and corrected by Petros Hadjicostas, Apr 12 2020 *)

Formula

a(n) = [x^n] Product_{k > 0} (1 + f(k)*x^k), where f(1) = 1 and f(m) = prime(m-1) for m >= 2.

Extensions

Various sections edited by Petros Hadjicostas, Apr 12 2020
Showing 1-4 of 4 results.