A147581 Numbers with exactly 8 distinct odd prime divisors {3,5,7,11,13,17,19,23}.
111546435, 334639305, 557732175, 780825045, 1003917915, 1227010785, 1450103655, 1673196525, 1896289395, 2119382265, 2342475135, 2565568005, 2788660875, 3011753745, 3681032355, 3904125225, 4350310965, 5019589575, 5465775315, 5688868185, 6135053925, 6358146795
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = {}; Do[If[EulerPhi[111546435 x] == 36495360 x, AppendTo[a, 111546435 x]], {x, 1, 100}]; a
-
Python
from sympy import integer_log def A147581(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i23 in range(integer_log(x,23)[0]+1): for i19 in range(integer_log(x23:=x//23**i23,19)[0]+1): for i17 in range(integer_log(x19:=x23//19**i19,17)[0]+1): for i13 in range(integer_log(x17:=x19//17**i17,13)[0]+1): for i11 in range(integer_log(x13:=x17//13**i13,11)[0]+1): for i7 in range(integer_log(x11:=x13//11**i11,7)[0]+1): for i5 in range(integer_log(x7:=x11//7**i7,5)[0]+1): c -= integer_log(x7//5**i5,3)[0]+1 return c return 111546435*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024
Formula
Sum_{n>=1} 1/a(n) = 1/36495360. - Amiram Eldar, Dec 22 2020
Extensions
More terms from Amiram Eldar, Mar 11 2020
Comments