cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147606 Expansion of g.f.: 1/((1 - x - x^2 + x^4 - x^6)*(1 - x^2 + x^4 + x^5 - x^6)).

Original entry on oeis.org

1, 1, 3, 4, 6, 8, 12, 15, 25, 35, 56, 84, 130, 192, 294, 432, 654, 972, 1466, 2192, 3308, 4953, 7463, 11185, 16820, 25224, 37906, 56868, 85445, 128239, 192643, 289196, 434364, 652124, 979372, 1470436, 2208192, 3315556, 4978892, 7475948, 11226252
Offset: 0

Views

Author

Roger L. Bagula, Nov 08 2008

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x-x^2+x^4-x^6)*(1-x^2+x^4+x^5-x^6)) )); // G. C. Greubel, Oct 24 2022
    
  • Mathematica
    f[x_]= -1+x+x^2-x^4+x^6;
    CoefficientList[Series[-1/(x^6*f[x]*f[1/x]), {x, 0, 50}], x] (* G. C. Greubel, Oct 24 2022 *)
  • SageMath
    def A147606_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x-x^2+x^4-x^6)*(1-x^2+x^4+x^5-x^6)) ).list()
    A147606_list(50) # G. C. Greubel, Oct 24 2022

Formula

G.f.: 1/(1 - x - 2*x^2 + x^3 + 3*x^4 - 5*x^6 + 3*x^8 + x^9 - 2*x^10 - x^11 + x^12).
G.f.: -1/(x^6*f(x)*f(1/x)), where f(x) = -1 + x + x^2 - x^4 + x^6. - G. C. Greubel, Oct 24 2022

Extensions

Definition corrected by N. J. A. Sloane, Nov 09 2008