cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147611 The 3rd Witt transform of A000027.

Original entry on oeis.org

0, 0, 0, 0, 2, 7, 18, 42, 84, 153, 264, 429, 666, 1001, 1456, 2061, 2856, 3876, 5166, 6783, 8778, 11214, 14168, 17710, 21924, 26910, 32760, 39582, 47502, 56637, 67122, 79112, 92752, 108207, 125664, 145299, 167310, 191919, 219336, 249795, 283556
Offset: 0

Views

Author

R. J. Mathar, Nov 08 2008

Keywords

Comments

a(n) is the number of binary Lyndon words of length n+3 having 3 blocks of 0's, see Math.SE. - Andrey Zabolotskiy, Nov 16 2021

Crossrefs

Cf. A006584 (2nd Witt transform of A000027), A049347, A099254, A147618.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); [0,0,0,0] cat Coefficients(R!( x^4*(2-x+2*x^2)/((1-x)^6*(1+x+x^2)^2) )); // G. C. Greubel, Oct 24 2022
    
  • Mathematica
    CoefficientList[Series[x^4(2 -x+ 2*x^2)/((1-x)^6*(1 +x +x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 13 2012 *)
  • SageMath
    def A147611_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^4*(2-x+2*x^2)/((1-x)^6*(1+x+x^2)^2) ).list()
    A147611_list(50) # G. C. Greubel, Oct 24 2022

Formula

G.f.: x^4*(2-x+2*x^2)/((1-x)^6*(1+x+x^2)^2).
a(n) = (1/27)*((3*A049347(n) + A049347(n-1)) - 3*(-1)^n*(A099254(n) - A099254(n- 1)) + n*(3*n^4 - 15*n^2 - 28)/40). - G. C. Greubel, Oct 24 2022