A147611 The 3rd Witt transform of A000027.
0, 0, 0, 0, 2, 7, 18, 42, 84, 153, 264, 429, 666, 1001, 1456, 2061, 2856, 3876, 5166, 6783, 8778, 11214, 14168, 17710, 21924, 26910, 32760, 39582, 47502, 56637, 67122, 79112, 92752, 108207, 125664, 145299, 167310, 191919, 219336, 249795, 283556
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160.
- Pieter Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO].
- Felix Pahl, Find the number of n-length Lyndon words on alphabet {0,1} with k blocks of 0's. (answer), Mathematics StackExchange, 2020.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,6,-9,12,-9,6,-6,4,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); [0,0,0,0] cat Coefficients(R!( x^4*(2-x+2*x^2)/((1-x)^6*(1+x+x^2)^2) )); // G. C. Greubel, Oct 24 2022 -
Mathematica
CoefficientList[Series[x^4(2 -x+ 2*x^2)/((1-x)^6*(1 +x +x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 13 2012 *)
-
SageMath
def A147611_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^4*(2-x+2*x^2)/((1-x)^6*(1+x+x^2)^2) ).list() A147611_list(50) # G. C. Greubel, Oct 24 2022
Formula
G.f.: x^4*(2-x+2*x^2)/((1-x)^6*(1+x+x^2)^2).
a(n) = (1/27)*((3*A049347(n) + A049347(n-1)) - 3*(-1)^n*(A099254(n) - A099254(n- 1)) + n*(3*n^4 - 15*n^2 - 28)/40). - G. C. Greubel, Oct 24 2022
Comments