A147613 Numbers that are not Jacobsthal numbers.
2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1
Keywords
Links
- Wikipedia, Lambek-Moser theorem
Crossrefs
Cf. A001045.
Programs
-
Maple
a:=proc(n) floor(-LambertW(-1,-1/3*ln(2)*2^(3/2-n))/ln(2)+1/2) end: seq(a(n), n=1..70); # Simon Plouffe, Nov 29 2017
-
Mathematica
Complement[Range[m = 100], LinearRecurrence[{1, 2}, {0, 1}, m]] (* Jean-François Alcover, Feb 13 2018 *)
-
Python
def A147613(n): return (m:=n-2+(k:=(3*n+1).bit_length()))+(m>=((1<
Chai Wah Wu, Apr 17 2025
Formula
a(n) = floor(-LambertW(-1, -(1/3)*log(2)*2^(3/2-n))/log(2) + 1/2). - Nicolas Normand (Nicolas.Normand(at)polytech.univ-nantes.fr), Nov 29 2017
a(n) = m+1 if m>=A001045(floor(log_2(3*n+1))+1) and a(n) = m otherwise, where m = n-1+floor(log_2(3*n+1)). - Chai Wah Wu, Apr 17 2025
Comments