A147621 The 3rd Witt transform of A000292.
0, 0, 0, 0, 4, 26, 120, 455, 1456, 4122, 10608, 25194, 55980, 117572, 235144, 450681, 832048, 1485800, 2575368, 4345965, 7158060, 11532402, 18209100, 28224105, 43008120, 64512240, 95365920, 139075245, 200268432, 284997384, 401107356
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,60,-102,168,-258,336,-393,452,-484,452,-393, 336,-258,168,-102,60,-28,8,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4) )); // G. C. Greubel, Oct 24 2022 -
Mathematica
CoefficientList[Series[x^4(2*x^2 - x + 2)(2*x^4 - 2*x^3 + 9*x^2 - 2*x+2)/((1-x)^12 * (1 + x + x^2)^4), {x, 0, 40}], x] (* Vincenzo Librandi Dec 13 2012 *)
-
SageMath
def A147621_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4) ).list() A147621_list(40) # G. C. Greubel, Oct 24 2022
Formula
G.f.: x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4).
a(n) = (1/729)*(b(n) + c(n)), where b(n) = n*(n+3)*(n+6)*(3*n^8 +72*n^7 +618*n^6 + 2052*n^5 +207*n^4 -11772*n^3 -14268*n^2 +9648*n -232960)/492800 and c(n) = 9*A049347(n) +5*A049347(n-1) +9*(-1)^n*(A099254(n) -A099254(n-1)) -18(-1)^n*A128504(n) +27*(-1)^n*Sum_{k=0..n} A099254(n-k)*A099254(k-1). - G. C. Greubel, Oct 24 2022
Comments