cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A147873 A sequence based on the mechanics of A147781: b(n) = Apply[Plus, IntegerDigits( 17982*Sum_{m=0..7} Prime(n+m) )]; a(n) = 1-(b(n) mod 2).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1
Offset: 1

Views

Author

E.J.P. Vening and Roger L. Bagula, Nov 16 2008

Keywords

Programs

  • Mathematica
    a[n_] := Apply[Plus, IntegerDigits[27*666*Sum[Prime[n + m], {m, 0, 7}]]]; Table[1 - Mod[a[n], 2], {n, 1, 100}]

A147850 Parity of the digits sum of Sum_{j = 8*n-7..8*n} prime(j).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

E.J.P. Vening, Nov 15 2008

Keywords

Examples

			2+3+5+7+11+13+17+19 = 1384614 (1+3+8+4+6+1+4) = 27 (1).
23+29+31+37+41+43+47+53 = 5466528 (5+4+6+6+5+2+8) = 36 (0).
461+463+467+479+487+491+499+503 = 69230700 (6+9+2+3+7) = 27 (1).
509+521+523+541+547+557+563+569 = 77862060 (7+7+8+6+2+6) = 36 (0).
		

Crossrefs

Cf. A147781.

Programs

Formula

a(n) = 1 - A147781(n).
a(n) = A007953(17982*A127335(8*n-7)) mod 2. - R. J. Mathar, Jan 06 2009

Extensions

More terms from R. J. Mathar, Jan 06 2009
Showing 1-2 of 2 results.