cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147952 a(0) = 0, a(1) = a(2) = 1, and for n >= 3, a(n) = a(a(n-2)) + r(n), where r(n) = a(a(floor(n/3))) when n == 0 or 1 (mod 3) and = a(n - a(floor(n/3))) when n == 2 (mod 3).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 3, 4, 3, 3, 5, 3, 4, 5, 4, 5, 7, 4, 4, 6, 4, 4, 8, 4, 6, 6, 4, 4, 8, 4, 6, 10, 5, 6, 7, 4, 5, 9, 5, 5, 8, 6, 7, 7, 5, 5, 10, 6, 6, 7, 5, 6, 8, 4, 6, 8, 4, 6, 8, 4, 6, 10, 4, 5, 8, 5, 6, 8, 6, 8, 6, 6, 4, 10, 4, 5, 8, 5, 6, 13, 4, 6, 8, 4, 6, 8, 6, 8, 6, 6, 4, 10, 4, 5, 8, 6, 7, 10, 6, 6
Offset: 0

Views

Author

Roger L. Bagula, Nov 17 2008

Keywords

Crossrefs

Programs

  • Mathematica
    f[0] = 0; f[1] = 1; f[2] = 1; f[n_] := f[n] = f[f[n - 2]] + If[Mod[n, 3] == 0,f[f[n/3]], If[Mod[n, 3] == 1, f[f[(n - 1)/3]], f[n - f[(n - 2)/3]]]]; Table[f[n], {n, 0, 100}]

Formula

a(n) = a(a(n - 2)) + If[Mod[n, 3] == 0, a(a(n/3)), If[Mod[n, 3] == 1, a(a((n - 1)/3)), a(n - a((n - 2)/3))] for n >= 3 with a(0) = 0 and a(1) = a(2) = 1. [edited by Petros Hadjicostas, Apr 13 2020]

Extensions

Name edited by Petros Hadjicostas, Apr 13 2020