cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143647 a(n) = ((5 + sqrt(3))^n + (5 - sqrt(3))^n)/2.

Original entry on oeis.org

1, 5, 28, 170, 1084, 7100, 47152, 315320, 2115856, 14221520, 95666368, 643790240, 4333242304, 29169037760, 196359046912, 1321871638400, 8898817351936, 59906997474560, 403295993003008, 2715005985589760, 18277548009831424
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Oct 27 2008

Keywords

Comments

Binomial transform of A083882. - R. J. Mathar, Nov 01 2008
Inverse binomial transform of A147961.

Crossrefs

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((5+r3)^n+(5-r3)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 01 2008
  • Mathematica
    Simplify[With[{c=Sqrt[3]},Table[((5+c)^n+(5-c)^n)/2,{n,0,25}]]] (* or *) LinearRecurrence[{10,-22},{1,5},25] (* Harvey P. Dale, Jun 04 2011 *)

Formula

From Philippe Deléham, Klaus Brockhaus and R. J. Mathar, Nov 01 2008: (Start)
a(n) = 10*a(n-1) - 22*a(n-2), a(0)=1, a(1)=5.
G.f.: (1-5x)/(1-10x+22*x^2). (End)
a(n) = (Sum_{k=0..n} A098158(n,k)*5^(2*k)*3^(n-k))/5^n. - Philippe Deléham, Nov 06 2008

Extensions

More terms from Klaus Brockhaus and R. J. Mathar, Nov 01 2008
Edited by Klaus Brockhaus, Jul 15 2009
Showing 1-1 of 1 results.