cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A335570 Number A(n,k) of n-step k-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 7, 6, 1, 1, 1, 5, 13, 17, 10, 1, 1, 1, 6, 21, 40, 47, 20, 1, 1, 1, 7, 31, 81, 136, 125, 35, 1, 1, 1, 8, 43, 146, 325, 496, 333, 70, 1, 1, 1, 9, 57, 241, 686, 1433, 1753, 939, 126, 1, 1, 1, 10, 73, 372, 1315, 3476, 6473, 6256, 2597, 252, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 26 2021

Keywords

Examples

			A(2,2) = 3: [(0,0),(1,1),(2,2)], [(0,0),(1,1),(0,1)], [(0,0),(1,1),(1,0)].
Square array A(n,k) begins:
  1,  1,   1,    1,    1,     1,     1,      1, ...
  1,  1,   1,    1,    1,     1,     1,      1, ...
  1,  2,   3,    4,    5,     6,     7,      8, ...
  1,  3,   7,   13,   21,    31,    43,     57, ...
  1,  6,  17,   40,   81,   146,   241,    372, ...
  1, 10,  47,  136,  325,   686,  1315,   2332, ...
  1, 20, 125,  496, 1433,  3476,  7525,  14960, ...
  1, 35, 333, 1753, 6473, 18711, 46165, 102173, ...
  ...
		

Crossrefs

Rows n=0+1,2-3 give: A000012, A000027(k+1), A002061(k+1).
Main diagonal gives A335588.
Cf. A340591.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, b(n-1, map(x-> x+1, l))+add(
         `if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..nops(l)))
        end:
    A:= (n, k)-> b(n, [0$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, b[n - 1, l + 1] + Sum[If[l[[i]] > 0, b[n - 1, Sort[ReplacePart[l, i -> l[[i]] - 1]]], 0], {i, 1, Length[l]}]];
    A[n_, k_] := b[n, Table[0, {k}]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)

Formula

A(n,k) == 1 (mod k) for k >= 2.

A149424 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (0, -1, 0), (0, 0, -1), (1, 1, 1)}.

Original entry on oeis.org

1, 1, 4, 13, 40, 136, 496, 1753, 6256, 22912, 85216, 314836, 1170688, 4396048, 16623328, 62744017, 237680992, 904962400, 3459831424, 13219219972, 50621972224, 194465172304, 749061374848, 2884682636764, 11126422372864, 43007603099296, 166555051934848, 644984620465264, 2500560314630656
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Crossrefs

Cf. A151265.
Column k=3 of A335570.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, b(n-1, map(x-> x+1, l))+
          add(`if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..3))
        end:
    a:= n-> b(n, [0$3]):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 26 2021
  • Mathematica
    aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[i, j, 1 + k, -1 + n] + aux[i, 1 + j, k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

Formula

a(n) == 1 (mod 3). - Alois P. Heinz, Jul 12 2021
Showing 1-2 of 2 results.