cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151282 Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (0, 1), (1, 1)}.

Original entry on oeis.org

1, 2, 6, 18, 58, 190, 638, 2170, 7474, 25974, 90982, 320738, 1137002, 4049838, 14485326, 52001290, 187292514, 676546790, 2450311862, 8895769714, 32366225562, 117995832990, 430960312862, 1576675041434, 5777325893266, 21200338220630, 77901645076998, 286615385651970, 1055762834791114, 3893279267979662
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Comments

From Paul Barry, Jan 19 2009: (Start)
Hankel transform is 2^C(n+1,2).
Row sums of Riordan array ((1-2x)/(1-x+2x^2),x(1-x)/(1-x+2x^2))^{-1}.
G.f.: 1/(1-2x-2x^2/(1-x-2x^2/(1-x-2x^2/(1-x-2x^2/(1-...))))) (continued fraction).
First column of Riordan array ((1-x)/(1+x+2x^2),x/(1+x+2x^2))^{-1}. (End)

Examples

			G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 58*x^4 + 190*x^5 + 638*x^6 + 2170*x^7 + ...
		

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(-1 in {l[]}, 0, `if`(n=0, 1,
          add(b(n-1, l+d), d=[[-1, -1], [-1, 0], [0, 1], [1, 1]])))
        end:
    a:= n-> b(n, [0$2]):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 18 2013
  • Mathematica
    aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]

Formula

Conjecture: (n+1)*a(n)-3*(2n+1)*a(n-1) +(n+10)*a(n-2) +28(n-2)*a(n-3)=0. - R. J. Mathar, Dec 08 2011
a(n) ~ sqrt(1348+953*sqrt(2)) * (1+2*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 14 2013