A151511 The triangle in A151359 read by rows downwards.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 0, 63, 301, 350, 140, 21, 1, 0, 0, 119, 966, 1701, 1050, 266, 28, 1, 0, 0, 210, 2989, 7770, 6951, 2646, 462, 36, 1, 0, 0, 336, 8925, 33985, 42525, 22827, 5880, 750, 45, 1, 0, 0, 462, 25641
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 3 1 0 1 7 6 1 0 1 15 25 10 1 0 1 31 90 65 15 1 0 0 63 301 350 140 21 1 0 0 119 966 1701 1050 266 28 1
Links
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009 (see Table 7 E5(n,k) page 16).
Crossrefs
Programs
-
Mathematica
Unprotect[Power]; 0^0 = 1; a[n_ /; 1 <= n <= 6] = 1; a[] = 0; T[n, k_] := T[n, k] = If[k == 0, a[0]^n, Sum[Binomial[n - 1, j - 1] a[j] T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 20 2016, after Peter Luschny *)
-
Sage
# uses[bell_matrix from A264428] bell_matrix(lambda n: 1 if n<6 else 0, 12) # Peter Luschny, Jan 19 2016
Formula
Bivariate e.g.f. A151511(x,t) = Sum_{n>=0, k>=0} T(n,k)*x^n*t^k/n! = exp(t*G6(x)), where G6(x) = Sum_{i=1..6} x^i/i! is the e.g.f. of column 1. - R. J. Mathar, May 28 2019
Extensions
Row 9 added by Michel Marcus, Feb 13 2014
More rows from R. J. Mathar, May 28 2019
Comments