A151509 The triangle in A151338 read by rows downwards.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 0, 31, 90, 65, 15, 1, 0, 0, 56, 301, 350, 140, 21, 1, 0, 0, 91, 938, 1701, 1050, 266, 28, 1, 0, 0, 126, 2737, 7686, 6951, 2646, 462, 36, 1, 0, 0, 126, 7455, 32725, 42315, 22827, 5880, 750, 45, 1, 0, 0, 0, 18711, 132055
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 1, 3, 1; 0, 1, 7, 6, 1; 0, 1, 15, 25, 10, 1; 0, 0, 31, 90, 65, 15, 1; 0, 0, 56, 301, 350, 140, 21, 1; 0, 0, 91, 938, 1701, 1050, 266, 28, 1;
Links
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009 (see Table 6 E4(n,k) page 15).
Programs
-
Mathematica
rows = 10; BellMatrix[f_Function | f_Symbol, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[If[# < 5, 1, 0]&, rows]; Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
-
Sage
# uses[bell_matrix from A264428] bell_matrix(lambda n: 1 if n<5 else 0, 12) # Peter Luschny, Jan 19 2016
Formula
Bivariate e.g.f A151509(x,t) = Sum_{n>=0, k>=0} T(n,k)*x^n*t^k/n! = exp(t*G5(x)), where G5(x) = Sum_{i=1..5} x^i/i! is the e.g.f. of column 1. - R. J. Mathar, May 28 2019
Extensions
Row 9 added by Michel Marcus, Feb 13 2014
More rows from R. J. Mathar, May 28 2019
Comments