cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151512 The triangle in A151359 read by rows upwards.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 25, 15, 1, 0, 1, 15, 65, 90, 31, 1, 0, 1, 21, 140, 350, 301, 63, 0, 0, 1, 28, 266, 1050, 1701, 966, 119, 0, 0, 1, 36, 462, 2646, 6951, 7770, 2989, 210, 0, 0, 1, 45, 750, 5880, 22827, 42525, 33985, 8925, 336, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 14 2009

Keywords

Comments

Conjectured: The i-th element of row j is the number of different equivalence relationships, within a set of (j-1) element, having (j-i) equivalence classes. For example: row 5 = [1, 6, 7, 1, 0] means that, in a set of 4 elements, there exists 7 equivalence relationships having 3 different equivalence classes. - Philippe Beaudoin, Nov 09 2013

Examples

			Triangle begins:
  1
  1  0
  1  1   0
  1  3   1    0
  1  6   7    1    0
  1 10  25   15    1   0
  1 15  65   90   31   1   0
  1 21 140  350  301  63   0 0
  1 28 266 1050 1701 966 119 0 0
		

Crossrefs

Cf. A148092 (row sums), A151511 (row-reversed).

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; a[n_ /; 1 <= n <= 6] = 1; a[] = 0; t[n, k_] := t[n, k] = If[k == 0, a[0]^n, Sum[Binomial[n - 1, j - 1] a[j] t[n - j, k - 1], {j, 0, n - k + 1}]]; Table[Table[t[n - 1, k], {k, n - 1, 0, -1}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 20 2016, using Peter Luschny's Bell transform *)

Extensions

Row 9 added by Michel Marcus, Feb 13 2014
Row 10 from R. J. Mathar, May 28 2019