A151512 The triangle in A151359 read by rows upwards.
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 25, 15, 1, 0, 1, 15, 65, 90, 31, 1, 0, 1, 21, 140, 350, 301, 63, 0, 0, 1, 28, 266, 1050, 1701, 966, 119, 0, 0, 1, 36, 462, 2646, 6951, 7770, 2989, 210, 0, 0, 1, 45, 750, 5880, 22827, 42525, 33985, 8925, 336, 0, 0
Offset: 0
Examples
Triangle begins: 1 1 0 1 1 0 1 3 1 0 1 6 7 1 0 1 10 25 15 1 0 1 15 65 90 31 1 0 1 21 140 350 301 63 0 0 1 28 266 1050 1701 966 119 0 0
Links
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009) (see Table 7 E5(n,k) page 16).
Programs
-
Mathematica
Unprotect[Power]; 0^0 = 1; a[n_ /; 1 <= n <= 6] = 1; a[] = 0; t[n, k_] := t[n, k] = If[k == 0, a[0]^n, Sum[Binomial[n - 1, j - 1] a[j] t[n - j, k - 1], {j, 0, n - k + 1}]]; Table[Table[t[n - 1, k], {k, n - 1, 0, -1}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 20 2016, using Peter Luschny's Bell transform *)
Extensions
Row 9 added by Michel Marcus, Feb 13 2014
Row 10 from R. J. Mathar, May 28 2019
Comments