cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151546 When computing A160256(n), it must be a multiple of a(n).

Original entry on oeis.org

1, 2, 3, 2, 3, 8, 9, 8, 3, 2, 6, 1, 6, 5, 12, 5, 12, 1, 60, 7, 60, 7, 60, 7, 60, 7, 60, 7, 60, 1, 420, 11, 420, 11, 420, 11, 420, 11, 420, 11, 420, 11, 420, 11, 420, 22, 378, 55, 126, 55, 63, 220, 63, 440, 189, 880, 567, 880, 189, 220, 63, 55, 252, 275, 252, 275, 336, 275, 84, 275, 84
Offset: 3

Views

Author

N. J. A. Sloane, May 16 2009

Keywords

Comments

In other words, a(n) = numerator of b(n-2)/b(n-1), where b() = A160256().
Then b(n) = smallest multiple of a(n) not already present in A160256.

Programs

  • Maple
    bb:= proc(n) option remember; false end: b:= proc(n) option remember; local k, m; if n<3 then bb(n):= true; n else m:= denom(b(n-1) /b(n-2)); for k from m by m while bb(k) do od; bb(k):= true; k fi end: a:= n-> numer(b(n-2) /b(n-1)): seq(a(n), n=3..100); # Alois P. Heinz, May 17 2009
  • Mathematica
    bb[n_] := bb[n] = False;
    b[n_] := b[n] = Module[{k, m}, If[n < 3, bb[n] = True; n, m = Denominator[ b[n - 1] /b[n - 2]]; For[ k = m , bb[k], k += m]; bb[k] = True; k ]];
    a[n_] := Numerator[b[n - 2] /b[n - 1]];
    Table[a[n], {n, 3, 100}]