cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A156740 Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 7, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 153, 1, 1, 4845, 4845, 1, 1, 74613, 2362745, 74613, 1, 1, 735471, 358664691, 358664691, 735471, 1, 1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1, 1, 30421755, 1056158828725, 160324910200455, 160324910200455, 1056158828725, 30421755, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 14 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,     153,           1;
  1,    4845,        4845,            1;
  1,   74613,     2362745,        74613,           1;
  1,  735471,   358664691,    358664691,      735471,       1;
  1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1;
		

Crossrefs

Cf. A086645 (m=0), A156739 (m=6), this sequence (m=7), A156741 (m=8), A156742 (m=9).
Cf. A151614 (row sums).

Programs

  • Magma
    A156740:= func< n,k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..7]]) ) >;
    [A156740(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2021
    
  • Mathematica
    b[n_, k_]:= Binomial[2*n, 2*k];
    T[n_, k_, m_]:= Round[Product[b[n+j, k+j]/b[n-k+j, j], {j,0,m}]];
    Table[T[n, k, 7], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 19 2021 *)
  • Sage
    def A156740(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..7)) )
    flatten([[A156740(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2021

Formula

T(n, k, m) = round( Product_{j=0..m} b(n+j, k+j)/b(n-k+j, j) ), where b(n, k) = binomial(2*n, 2*k) and m = 7.
Sum_{k=0..n} T(n, k, 7) = A151614(n).

Extensions

Definition corrected to give integral terms and edited by G. C. Greubel, Jun 19 2021
Showing 1-1 of 1 results.