A151617 Row sums of A153521.
2, 22, 242, 2662, 7986, 45254, 178354, 854502, 3670898, 16741318, 73862514, 331879526, 1476246706, 6603168198, 29445050162, 131524950502, 586945452786, 2620665361094, 11697730702834, 52222780377702, 233120598486578, 1040691781127878, 4645710145608114, 20739029883622886, 92580871368935026, 413291071457721798
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (2,11).
Crossrefs
Cf. A153521.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 41); Coefficients(R!( 2*x*(1 +9*x +88*x^2 +968*x^3)/(1-2*x-11*x^2) )); // G. C. Greubel, Mar 04 2021 -
Maple
m:= 40; S:= series( x*(2 +18*x +176*x^2 +1936*x^3)/(1-2*x-11*x^2), x, m+1); seq(coeff(S, x, j), j = 1..m); # G. C. Greubel, Mar 04 2021
-
Mathematica
LinearRecurrence[{2, 11}, {2, 22, 242, 2662}, 40] (* G. C. Greubel, Mar 04 2021 *)
-
Sage
def A151617_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 2*x*(1 +9*x +88*x^2 +968*x^3)/(1-2*x-11*x^2) ).list() a=A151617_list(41); a[1:] # G. C. Greubel, Mar 04 2021
Formula
From G. C. Greubel, Mar 04 2021: (Start)
a(n) = 2*a(n-1) + 11*a(n-2), for n>4, with a(1)=2, a(2)=22, a(3)=242, a(4)=2662.
G.f.: 2*x*(1 + 11*x + (11*x)^2*(1+9*x)/(1-2*x-11*x^2)).
G.f.: 2*x*(1 +9*x +88*x^2 +968*x^3)/(1-2*x-11*x^2).
a(n) = 2*a(n-1) + prime(j)*a(n-2), for n > 4, with a(1) = 2, a(2) = 2*prime(j), a(3) = 2*prime(j)^2, a(4) = 2*prime(j)^3 for j = 5.
a(n) = 2*(prime(j)-3)*[n=1] -2*prime(j)*(prime(j)-3)*[n=2] +2*prime(j)^2*(i*sqrt(prime(j)))^(n-3)*(ChebyshevU(n-3, -i/Sqrt(prime(j))) -((prime(j) -2)*i/sqrt(prime(j)))*ChebyshevU(n-4, -i/sqrt(prime(j)))) for j = 5. (End)
Extensions
Terms a(11) onward added by G. C. Greubel, Mar 04 2021