cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151617 Row sums of A153521.

Original entry on oeis.org

2, 22, 242, 2662, 7986, 45254, 178354, 854502, 3670898, 16741318, 73862514, 331879526, 1476246706, 6603168198, 29445050162, 131524950502, 586945452786, 2620665361094, 11697730702834, 52222780377702, 233120598486578, 1040691781127878, 4645710145608114, 20739029883622886, 92580871368935026, 413291071457721798
Offset: 1

Views

Author

N. J. A. Sloane, May 29 2009

Keywords

Crossrefs

Cf. A153521.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 41);
    Coefficients(R!( 2*x*(1 +9*x +88*x^2 +968*x^3)/(1-2*x-11*x^2) )); // G. C. Greubel, Mar 04 2021
  • Maple
    m:= 40;
    S:= series( x*(2 +18*x +176*x^2 +1936*x^3)/(1-2*x-11*x^2), x, m+1);
    seq(coeff(S, x, j), j = 1..m); # G. C. Greubel, Mar 04 2021
  • Mathematica
    LinearRecurrence[{2, 11}, {2, 22, 242, 2662}, 40] (* G. C. Greubel, Mar 04 2021 *)
  • Sage
    def A151617_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 2*x*(1 +9*x +88*x^2 +968*x^3)/(1-2*x-11*x^2) ).list()
    a=A151617_list(41); a[1:] # G. C. Greubel, Mar 04 2021
    

Formula

From G. C. Greubel, Mar 04 2021: (Start)
a(n) = 2*a(n-1) + 11*a(n-2), for n>4, with a(1)=2, a(2)=22, a(3)=242, a(4)=2662.
G.f.: 2*x*(1 + 11*x + (11*x)^2*(1+9*x)/(1-2*x-11*x^2)).
G.f.: 2*x*(1 +9*x +88*x^2 +968*x^3)/(1-2*x-11*x^2).
a(n) = 2*a(n-1) + prime(j)*a(n-2), for n > 4, with a(1) = 2, a(2) = 2*prime(j), a(3) = 2*prime(j)^2, a(4) = 2*prime(j)^3 for j = 5.
a(n) = 2*(prime(j)-3)*[n=1] -2*prime(j)*(prime(j)-3)*[n=2] +2*prime(j)^2*(i*sqrt(prime(j)))^(n-3)*(ChebyshevU(n-3, -i/Sqrt(prime(j))) -((prime(j) -2)*i/sqrt(prime(j)))*ChebyshevU(n-4, -i/sqrt(prime(j)))) for j = 5. (End)

Extensions

Terms a(11) onward added by G. C. Greubel, Mar 04 2021