cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151628 Number of permutations of 2 indistinguishable copies of 1..n with exactly 6 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 0, 1, 5158, 1822014, 242384856, 19323413187, 1130781824398, 54076536713976, 2251621794635088, 84973986733001061, 2985450779006443846, 99474230412387811666, 3185003930126491696920, 98939258210106714816135, 3003063241991742340646382, 89537653738976723063722828
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=6 of A154283.

Programs

  • Magma
    [(&+[(-1)^j*Binomial(2*n+1, j)*Binomial(8-j, 2)^n: j in [0..6]]): n in [1..30]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1,j]*B[8-j,2]^n, {j,0,6}], {n, 30}]] (* G. C. Greubel, Sep 07 2022 *)
  • SageMath
    @CachedFunction
    def A151628(n): return sum((-1)^j*binomial(2*n+1, j)*binomial(8-j, 2)^n for j in (0..6))
    [A151628(n) for n in (1..30)] # G. C. Greubel, Sep 07 2022

Formula

From G. C. Greubel, Sep 07 2022: (Start)
a(n) = Sum_{j=0..6} (-1)^j*binomial(2*n+1, j)*binomial(8-j, 2)^n.
G.f.: x^4*(1 + 4948*x + 759393*x^2 - 35443768*x^3 - 508116211*x^4 + 51430255228*x^5 - 1039884450243*x^6 + 5791934217096*x^7 + 99233948186819*x^8 - 2137209451932636*x^9 + 17699047175646675*x^10 - 64844223652304424*x^11 - 67279992193011969*x^12 + 1850800989665593044*x^13 - 8839633922267140593*x^14 + 20366483030687973816*x^15 - 15348635039953199376*x^16 - 39686222209918929480*x^17 + 123668352881463084480*x^18 - 135232901326862200800*x^19 + 35906630373023328000*x^20 + 48364304383014480000*x^21 - 29287301536936800000*x^22 - 4134207084840000000*x^23)/((1-x)^7*(1-3*x)^6*(1-6*x)^5*(1-10*x)^4*(1-15*x)^3*(1-21*x)^2*(1-28*x)).
E.g.f.: exp(28*x) - (1 + 42*x)*exp(21*x) + 45*x*(1 + 10*x)*exp(15*x) - (10/3)*x*(3 + 120*x + 400*x^2)*exp(10*x) + 18*x^2*(5 + 40*x + 48*x^2)*exp(6*x) - (9/10)*x^2*(5 + 90*x + 180*x^2 + 72*x^3)*exp(3*x) + (1/90)*x^3*(105 + 210*x + 84*x^2 + 8*x^3)*exp(x). (End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 06 2020