cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151629 Number of permutations of 2 indistinguishable copies of 1..n with exactly 7 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 0, 0, 232, 450048, 163809288, 27306899520, 2898916824320, 230479103253264, 15045786224718576, 853790829031070016, 43726349865720132216, 2073954076439134340896, 92786533933117718314680, 3968339124661862533557120, 163867469809854783921566544
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=7 of A154283.

Programs

  • Magma
    [(&+[(-1)^j*Binomial(2*n+1, j)*Binomial(9-j, 2)^n: j in [0..7]]): n in [1..30]]; // G. C. Greubel, Sep 08 2022
    
  • Mathematica
    With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1, j]*B[9-j, 2]^n, {j,0,7}], {n, 30}]] (* G. C. Greubel, Sep 08 2022 *)
  • SageMath
    def A151629(n): return sum((-1)^j*binomial(2*n+1, j)*binomial(9-j, 2)^n for j in (0..7))
    [A151629(n) for n in (1..30)] # G. C. Greubel, Sep 08 2022

Formula

From G. C. Greubel, Sep 07 2022: (Start)
a(n) = Sum_{j=0..7} (-1)^j*binomial(2*n+1, j)*binomial(9-j, 2)^n.
G.f.: 8*x^5*(29 +46686*x +3405558*x^2 -592781020*x^3 +15959334952*x^4 +631633031922*x^5 -49837254287872*x^6 +1300883760100354*x^7 -12994364551718898*x^8 -140176079949572802*x^9 +6513756576348329884*x^10 -101042319163019645166*x^11 +848633388017107293828*x^12 -2913665757033808948194*x^13 -19357175742148303993152*x^14 +332871592406004436180230*x^15 -2265050438781150240585891*x^16 +8844782645551069762176780*x^17 -16577175062101039893470178*x^18 -216035122652452146094327988*x^19 +244246494424905520901547660*x^20 -780226424729404888409973432*x^21 +1345511462530423731597208080*x^22 -1027054667766768116706056160*x^23 -747115159033132605830894400*x^24 +2731966566484322974432464000*x^25 -2760478881311463186555360000*x^26 +892027667079782450985600000*x^27 +450814927116061418400000000*x^28 -303214961231096241600000000*x^29 -30004421338934784000000000*x^30)/( Product_{j=1..8} (1-binomial(j+1,2)*x)^(9-j) ).
E.g.f.: exp(36*x) - (1 + 56*x)*exp(28*x) + 63*x*(1 + 14*x)*exp(21*x) - 15*x*(1 + 60*x + 300*x^2)*exp(15*x) + (250/3)*x^2*(3 + 40*x + 80*x^2)*exp(10*x) - (18/5)*x^2*(5 + 180*x + 720*x^2 + 576*x^3)*exp(6*x) + (9/10)*x^3*(35 + 210*x + 252*x^2 + 72*x^3)*exp(3*x) - (1/630)*x^3*(105 + 840*x + 840*x^2 + 224*x^3 + 16*x^4)*exp(x). (End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 06 2020