cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151631 Number of permutations of 2 indistinguishable copies of 1..n with exactly 9 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 0, 0, 0, 716, 6030140, 6727188848, 2898916824320, 713977455470200, 121976270685699352, 16151017610840330800, 1776999565259831468176, 170177528415687895764196, 14652450038892876986833140, 1161079239300986084649361440, 86154881092488160155801056400
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=9 of A154283.

Programs

  • Magma
    [(&+[(-1)^j*Binomial(2*n+1, j)*Binomial(11-j, 2)^n: j in [0..9]]): n in [1..30]]; // G. C. Greubel, Sep 08 2022
    
  • Mathematica
    With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1, j]*B[11-j, 2]^n, {j,0,9}], {n, 30}]] (* G. C. Greubel, Sep 08 2022 *)
  • SageMath
    def A151631(n): return sum((-1)^j*binomial(2*n+1, j)*binomial(11-j, 2)^n for j in (0..9))
    [A151631(n) for n in (1..30)] # G. C. Greubel, Sep 08 2022

Formula

From G. C. Greubel, Sep 08 2022: (Start)
a(n) = Sum_{j=0..9} (-1)^j*binomial(2*n+1, j)*binomial(11-j, 2)^n.
G.f. and e.g.f. are in the file "Generating functions". (End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 06 2020