A151633 Number of permutations of 3 indistinguishable copies of 1..n with exactly 3 adjacent element pairs in decreasing order.
0, 1, 760, 49682, 1722320, 45699447, 1063783164, 23119658500, 484099087156, 9930487583345, 201402352998560, 4059011173618086, 81520052344904040, 1634100242397204427, 32722001111322772660, 654870005050881521672, 13102000022780506515884
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (56, -1242, 14412, -96873, 394308, -984324, 1492224, -1330560, 640000, -128000).
Crossrefs
Column k=3 of A174266.
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*Binomial[3*n+1, k-j+2]*(Binomial[j+1,3])^n, {j, 0, k+2}]; Table[T[n, 3], {n, 30}] (* G. C. Greubel, Mar 26 2022 *)
-
PARI
a(n) = {20^n - (3*n + 1)*10^n + binomial(3*n+1, 2)*4^n - binomial(3*n+1, 3)} \\ Andrew Howroyd, May 07 2020
-
Sage
@CachedFunction def T(n, k): return sum( (-1)^(k-j)*binomial(3*n+1, k-j+2)*(binomial(j+1,3))^n for j in (0..k+2) ) [T(n, 3) for n in (1..30)] # G. C. Greubel, Mar 26 2022
Formula
a(n) = 20^n - (3*n + 1)*10^n + binomial(3*n+1, 2)*4^n - binomial(3*n+1, 3). - Andrew Howroyd, May 07 2020
a(n) = Sum_{j=0..5} (-1)^(j+1)*binomial(3*n+1, 5-j)*(binomial(j+1, 3))^n. - G. C. Greubel, Mar 26 2022
Extensions
Terms a(10) and beyond from Andrew Howroyd, May 07 2020