cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151635 Number of permutations of 3 indistinguishable copies of 1..n with exactly 5 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 54, 128124, 40241088, 5904797049, 592030140912, 47871255785661, 3399596932632516, 222507204130403730, 13816730633213564154, 828855022115369147634, 48598186867956968680368, 2806334420165022553155783, 160409202733612103932779012, 9106532681255976991378628043
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=5 of A174266.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*Binomial[3*n+1, k-j+2]*(Binomial[j+1,3])^n, {j, 0, k+2}];
    Table[T[n, 5], {n, 30}] (* G. C. Greubel, Mar 26 2022 *)
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(k-j)*binomial(3*n+1, k-j+2)*(binomial(j+1,3))^n for j in (0..k+2) )
    [T(n, 5) for n in (1..30)] # G. C. Greubel, Mar 26 2022

Formula

a(n) = Sum_{j=0..7} (-1)^(j+1)*binomial(3*n+1, 7-j)*(binomial(j+1, 3))^n. - G. C. Greubel, Mar 26 2022

Extensions

Terms a(9) and beyond from Andrew Howroyd, May 06 2020