cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151637 Number of permutations of 3 indistinguishable copies of 1..n with exactly 7 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 0, 6750, 40241088, 40396577931, 18096792917796, 5183615502649800, 1129236431002624116, 205937718403143468690, 33309411205799991188160, 4957409194925592040479126, 695659299332984273417824080, 93590807522941640152432361025, 12213007949715545409829962783732
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=7 of A174266.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*Binomial[3*n+1, k-j+2]*(Binomial[j+1,3])^n, {j, 0, k+2}];
    Table[T[n, 7], {n, 30}] (* G. C. Greubel, Mar 26 2022 *)
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(k-j)*binomial(3*n+1, k-j+2)*(binomial(j+1,3))^n for j in (0..k+2) )
    [T(n, 7) for n in (1..30)] # G. C. Greubel, Mar 26 2022

Formula

a(n) = Sum_{j=0..9} (-1)^(j+1)*binomial(3*n+1, 9-j)*(binomial(j+1, 3))^n. - G. C. Greubel, Mar 26 2022

Extensions

Terms a(9) and beyond from Andrew Howroyd, May 06 2020