cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151644 Number of permutations of 4 indistinguishable copies of 1..n with exactly 6 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 1828, 21571984, 29066972368, 16938467955200, 6501926870387116, 1978065945844840160, 524378714083391626872, 127734445724723139679472, 29503552588857666326833140, 6587452899587031432766113392, 1439127765510353092008927027552, 310010313330353917185364216860320
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=6 of A236463.

Programs

  • Magma
    [(&+[(-1)^j*Binomial(4*n+1, j)*Binomial(10-j, 4)^n: j in [0..6]]): n in [1..30]]; // G. C. Greubel, Sep 12 2022
    
  • Mathematica
    Table[Sum[(-1)^j*Binomial[4*n+1, j]*Binomial[10-j, 4]^n, {j,0,6}], {n, 30}] (* G. C. Greubel, Sep 12 2022 *)
  • SageMath
    def A151644(n): return sum((-1)^j*binomial(4*n+1, j)*binomial(10-j, 4)^n for j in (0..6))
    [A151644(n) for n in (1..30)] # G. C. Greubel, Sep 12 2022

Formula

From G. C. Greubel, Sep 12 2022: (Start)
a(n) = Sum_{j=0..6} (-1)^j*binomial(4*n+1, j)*binomial(10-j, 4)^n.
G.f., e.g.f., and recurrence are in the file "Generating functions and recurrence". (End)

Extensions

Terms a(8) and beyond from Andrew Howroyd, May 06 2020