cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151645 Number of permutations of 4 indistinguishable copies of 1..n with exactly 7 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 112, 15018688, 69830127680, 99825129369600, 79985306860607376, 46314409921814756480, 22045769335091544766944, 9274231983519733250418880, 3600979296578512256763795120, 1326029824370661243342378614592, 471290654822091236131899199410048
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=7 of A236463.

Programs

  • Magma
    [(&+[(-1)^j*Binomial(4*n+1, j)*Binomial(11-j, 4)^n: j in [0..7]]): n in [1..30]]; // G. C. Greubel, Sep 12 2022
    
  • Mathematica
    Table[Sum[(-1)^j*Binomial[4*n+1, j]*Binomial[11-j, 4]^n, {j,0,7}], {n, 30}] (* G. C. Greubel, Sep 12 2022 *)
  • SageMath
    def A151645(n): return sum((-1)^j*binomial(4*n+1, j)*binomial(11-j, 4)^n for j in (0..7))
    [A151645(n) for n in (1..30)] # G. C. Greubel, Sep 12 2022

Formula

From G. C. Greubel, Sep 12 2022: (Start)
a(n) = Sum_{j=0..7} (-1)^j*binomial(4*n+1, j)*binomial(11-j, 4)^n.
G.f., e.g.f., and recurrence are in the file "Generating functions and recurrence". (End)

Extensions

Terms a(8) and beyond from Andrew Howroyd, May 06 2020