cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151709 Row sums of A156741.

Original entry on oeis.org

1, 2, 192, 14632, 5451140, 2216555772, 2201283594512, 2563699840815752, 5239330894956743702, 12738172416005805235262, 45354957806572334315266802, 190794310975336315988205573422, 1056059186013450690759502943569093, 6805676661977149073551721890947184830
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2009

Keywords

Crossrefs

Cf. A156741.

Programs

  • Mathematica
    A156741[n_, k_]:= Round[Product[Binomial[2*(n+j), 2*(k+j)]/Binomial[2*(n-k+j), 2*j], {j, 0, 8}]];
    A151709[n_]:= A151709[n]= Sum[A156741[n, k], {k,0,n}];
    Table[A151709[n], {n, 0, 30}] (* G. C. Greubel, Jun 19 2021 *)
  • Sage
    def A156741(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..8)) )
    def A151709(n): return sum( A156741(n, k) for k in (0..n) )
    [A151709(n) for n in (0..30)] # G. C. Greubel, Jun 19 2021

Formula

a(n) = Sum_{k=0..n} A156741(n, k).

Extensions

Terms a(11) onward added by G. C. Greubel, Jun 19 2021