A170905 Consider the hexagonal cellular automaton defined in A151723, A151724; a(n) = number of cells that go from OFF to ON at stage n, if we only look at a 60-degree wedge (including the two bounding edges).
0, 1, 2, 2, 4, 2, 4, 6, 8, 2, 4, 6, 10, 10, 8, 14, 16, 2, 4, 6, 10, 10, 10, 18, 26, 18, 8, 14, 24, 28, 20, 32, 32, 2, 4, 6, 10, 10, 10, 18, 26, 18, 10, 18, 30, 38, 34, 42, 58, 34, 8, 14, 24, 28, 28, 44, 68, 60, 28, 32, 56, 70, 50, 70, 64, 2, 4, 6, 10, 10, 10, 18, 26, 18, 10, 18, 30, 38, 34, 42
Offset: 0
Examples
From _Omar E. Pol_, Feb 12 2013: (Start) When written as a triangle starting from 1, the right border gives A000079 and row lengths give A011782. 1; 2; 2,4; 2,4,6,8; 2,4,6,10,10,8,14,16; 2,4,6,10,10,10,18,26,18,8,14,24,28,20,32,32; 2,4,6,10,10,10,18,26,18,10,18,30,38,34,42,58,34,8,14,24,28,28,44,68,60,28,32,56,70,50,70,64; 2,4,6,10,10,10,18,26,18,10,18,30,38,34,42,... ... (End)
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..1025
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Comments