Original entry on oeis.org
0, 1, 6, 6, 18, 6, 18, 30, 42, 6, 18, 30, 54, 54, 42, 78, 90, 6, 18, 30, 54, 54, 54, 102, 150, 102, 42, 78, 138, 162, 114, 186, 186, 6, 18, 30, 54, 54, 54, 102, 150, 102, 54, 102, 174, 222, 198, 246, 342, 198, 42, 78, 138, 162, 162, 258, 402, 354, 162, 186
Offset: 0
When written as a triangle:
0,
1,
6,
6,18,
6,18,30,42,
6,18,30,54,54,42,78,90,
6,18,30,54,54,54,102,150,102,42,78,138,162,114,186,186,
...
Right border gives 0 together with A068293. - _Omar E. Pol_, Mar 19 2015
- S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 (see Example 6, page 224).
- N. J. A. Sloane, Table of n, a(n) for n = 0..4095 [First 1024 terms from David Applegate and N. J. A. Sloane]
- David Applegate, The movie version
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- David Applegate and N. J. A. Sloane, Table of n, A151724(n), A151723(n) for n = 0..1025
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- N. J. A. Sloane, Exciting Number Sequences (video of talk), Mar 05 2021.
A170905
Consider the hexagonal cellular automaton defined in A151723, A151724; a(n) = number of cells that go from OFF to ON at stage n, if we only look at a 60-degree wedge (including the two bounding edges).
Original entry on oeis.org
0, 1, 2, 2, 4, 2, 4, 6, 8, 2, 4, 6, 10, 10, 8, 14, 16, 2, 4, 6, 10, 10, 10, 18, 26, 18, 8, 14, 24, 28, 20, 32, 32, 2, 4, 6, 10, 10, 10, 18, 26, 18, 10, 18, 30, 38, 34, 42, 58, 34, 8, 14, 24, 28, 28, 44, 68, 60, 28, 32, 56, 70, 50, 70, 64, 2, 4, 6, 10, 10, 10, 18, 26, 18, 10, 18, 30, 38, 34, 42
Offset: 0
From _Omar E. Pol_, Feb 12 2013: (Start)
When written as a triangle starting from 1, the right border gives A000079 and row lengths give A011782.
1;
2;
2,4;
2,4,6,8;
2,4,6,10,10,8,14,16;
2,4,6,10,10,10,18,26,18,8,14,24,28,20,32,32;
2,4,6,10,10,10,18,26,18,10,18,30,38,34,42,58,34,8,14,24,28,28,44,68,60,28,32,56,70,50,70,64;
2,4,6,10,10,10,18,26,18,10,18,30,38,34,42,...
... (End)
A169780
Total number of ON cells after n-th stage in one-sixth slice of hexagonal CA defined in A151723 (including both boundaries).
Original entry on oeis.org
0, 1, 3, 5, 9, 11, 15, 21, 29, 31, 35, 41, 51, 61, 69, 83, 99, 101, 105, 111, 121, 131, 141, 159, 185, 203, 211, 225, 249, 277, 297, 329, 361, 363, 367, 373, 383, 393, 403, 421, 447, 465, 475, 493, 523, 561, 595, 637, 695, 729, 737, 751, 775, 803, 831, 875, 943, 1003, 1031
Offset: 0
A256138
Total number of ON states after n generations of cellular automaton of A151723 based on hexagons, if we only look at two opposite 120-degree wedges, including the central cell.
Original entry on oeis.org
1, 5, 9, 21, 25, 37, 57, 85, 89, 101, 121, 157, 193, 221, 273, 333, 337, 349, 369, 405, 441, 477, 545, 645, 713, 741, 793, 885, 993, 1069, 1193, 1317, 1321, 1333, 1353, 1389, 1425, 1461, 1529, 1629, 1697, 1733, 1801, 1917, 2065, 2197, 2361, 2589, 2721, 2749, 2801, 2893, 3001, 3109, 3281, 3549, 3785, 3893, 4017, 4237, 4513, 4709, 4985, 5237
Offset: 1
A256537
First differences of corner sequence A256536 associated with A151723.
Original entry on oeis.org
1, 3, 5, 9, 9, 9, 17, 25, 17, 9, 17, 29, 37, 33, 41, 57, 33, 9, 17, 29, 37, 37, 53, 85, 85, 49, 41, 73, 101, 93, 101, 125, 65, 9, 17, 29, 37, 37, 53, 85, 85, 53, 53, 93, 133, 141, 149, 197, 181, 81, 41, 73, 101, 109, 141, 221, 253, 173, 117, 173, 249, 237, 237, 265, 129
Offset: 1
Written as an irregular triangle in which the row lengths are the absolute values of the terms of A141531, the sequence begins:
1;
3;
5;
9, 9;
9, 17, 25, 17;
9, 17, 29, 37, 33, 41, 57, 33;
9, 17, 29, 37, 37, 53, 85, 85, 49, 41, 73, 101, 93, 101, 125, 65;
9, 17, 29, 37, 37, 53, 85, 85, 53, 53, 93, 133, 141, 149, 197, 181, 81, 41, 73, 101, 109, 141, 221, 253, 173, 117, 173, 249, 237, 237, 265, 129;
...
It appears that the right border gives A083318, whose representation in base 2 gives A000533.
A256536
Corner sequence associated with A151723.
Original entry on oeis.org
1, 4, 9, 18, 27, 36, 53, 78, 95, 104, 121, 150, 187, 220, 261, 318, 351, 360, 377, 406, 443, 480, 533, 618, 703, 752, 793, 866, 967, 1060, 1161, 1286, 1351, 1360, 1377, 1406, 1443, 1480, 1533, 1618, 1703, 1756, 1809, 1902, 2035, 2176, 2325, 2522, 2703, 2784, 2825, 2898, 2999, 3108, 3249, 3470, 3723, 3896, 4013, 4186, 4435, 4672, 4909, 5174, 5303
Offset: 1
Original entry on oeis.org
1, 13, 25, 109, 121, 193, 325, 493, 529, 661, 829, 1129, 1189, 1405, 1657, 2101, 2149, 2281, 2533, 3133, 3337, 3709, 4309, 4909, 5065, 5449, 5917, 6757, 6877, 7381, 7873, 8845, 8893, 9025, 9277, 9877, 10165, 10849, 11737
Offset: 0
- Bradley Klee, Log-Periodic Coloring over Arrowed Half Hexagon tiling.
- Bradley Klee, Log-Periodic Coloring to Stage 64.
- Bradley Klee, T_n Tree Structure, n=1,2,3,4.
- Bradley Klee, Limit-Periodic Tilings, Wolfram Demonstrations Project (2015).
- S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 216 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 [Annotated scanned copy]
-
HexStar=2*Sqrt[3]*{Cos[#*Pi/3+Pi/6],Sin[#*Pi/3+Pi/6]}&/@Range[0,5];
MoveSet=Join[2*HexStar+RotateRight[HexStar],2*HexStar+RotateLeft[HexStar]];
Clear@Pts;Pts[0] = {{0, 0}};
Pts[n_]:=Pts[n]=With[{pts=Pts[n-1]},Union[pts,Cases[Tally[Flatten[pts/.{x_,y_}:> Evaluate[{x,y}+#&/@MoveSet],1]],{x_,1}:>x]]];Length[Pts[#]]&/@Range[0,32]
A334169
a(n) is the number of ON-cells in the n-th full level of ON-cells of a triangular wedge in the hexagonal grid of A151723 (after 2^k >= n generations have been computed).
Original entry on oeis.org
1, 2, 4, 6, 8, 10, 14, 16, 18, 26, 30, 32, 34, 50, 58, 62, 64, 66, 98, 114, 122, 126, 128, 130, 194, 226, 242, 250, 254, 256, 258, 386, 450, 482, 498, 506, 510, 512, 514, 770, 898, 962, 994, 1010, 1018, 1022, 1024, 1026, 1538, 1794, 1922, 1986, 2018, 2034, 2042, 2046, 2048, 2050, 3074, 3586, 3842
Offset: 0
The sequence is the triangle below read by rows, where each row contains m-1 full levels of ON-cells from level 2^(m-1) + 2 through level 2^m, for m >= 2:
m\j 0 1 2 3 4 5 6 7 8
0: 1
1: 2
2: 4
3: 6 8
4: 10 14 16
5: 18 26 30 32
6: 34 50 58 62 64
7: 66 98 114 122 126 128
8: 130 194 226 242 250 254 256
9: 258 386 450 482 498 506 510 512
10: 514 770 898 962 994 1010 1018 1022 1024
...
A formula for the m-1 elements in positions (m, j), 0 <= j <= m-2, in each row m >= 2 is: b(m, j) = 2 + Sum_{k=0..j} 2^(m-k-1).
-
triangleRow[m_] := Map[2+Sum[2^(m-k-1), {k, 0, #}]&, Range[0, m-2]]/;m>=2
triangleRow[10] (* last line in triangle in Comments section *)
a334169[0]=1; a334169[1]=2; a334169[n_] := Module[{k, j}, k=Floor[(3 + Sqrt[1 + 8(n-2)])/2]; j = n - 2 - (k-2)(k-1)/2; 2 + Sum[2^(k-i-1), {i, 0, j}]]/;n>=2
Map[a334169,Range[0,66]] (* sequence data *)
Original entry on oeis.org
1, 7, 31, 127, 499, 1975, 7855, 31327, 125119, 500083, 1999507, 7996327
Offset: 0
a(11) from Mike Warburton, Jan 31 2019.
A334164
a(n) is the number of ON-cells in the completed n-th level of a triangular wedge in the hexagonal grid of A151723 (i.e., after 2^k >= n generations of the automaton in A151723 have been computed).
Original entry on oeis.org
1, 2, 2, 4, 2, 6, 4, 8, 2, 10, 6, 10, 4, 14, 8, 16, 2, 18, 10, 16, 8, 20, 12, 22, 6, 26, 14, 22, 8, 30, 16, 32, 2, 34, 18, 28, 16, 34, 18, 32, 14, 40, 22, 34, 16, 42, 24, 44, 10, 50, 26, 40, 20, 48, 28, 50, 14, 58, 30, 46, 16, 62, 32, 64
Offset: 1
Cf.
A000051,
A036563,
A052548,
A083686,
A151723,
A164094,
A181565,
A195744,
A196657,
A206371,
A334169.
-
(* a169781[] and support functions are defined in A169781 and create the list nTriangle *)
a334164[n_] := Module[{k, levels={}}, a169781[n]; For[k=1, k<=n, k++, AppendTo[levels, Count[nTriangle[[k]], 1] - 2]]; levels]/;(n>=3 && IntegerQ[Log[2,n]])
a334164[64] (* sequence data *)
Showing 1-10 of 39 results.
Comments