cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151745 Composites that are the sum of two, three, four and five consecutive composite numbers.

Original entry on oeis.org

405, 1395, 3435, 3525, 4245, 4365, 6675, 6885, 7155, 7515, 7995, 8325, 8445, 9075, 10365, 10845, 11205, 11543, 13005, 14235, 14325, 18075, 19725, 19875, 22605, 23257, 23475, 23617, 26805, 27315, 29835, 29955, 31035, 32355, 32925, 33165, 34395
Offset: 1

Views

Author

Claudio Meller, Jun 15 2009

Keywords

Examples

			405 is in the list because it is composite and
405 = 202 + 203 (Sum of two consecutive composite numbers)
405 = 134 + 135 + 136 (Sum of three consecutive composite numbers)
405 = 99 + 100 + 102 + 104 (Sum of four consecutive composite numbers)
405 = 78 + 80 + 81 + 82 + 84 (Sum of five consecutive composite numbers).
		

Programs

  • Maple
    N:= 10^5: # for terms <= N
    Comps:= remove(isprime, [$2..N]):
    PSComps:= [0,op(ListTools:-PartialSums(Comps))]:
    C2:= convert(PSComps[3..-1]-PSComps[1..-3],set):
    C3:= convert(PSComps[4..-1]-PSComps[1..-4],set):
    C4:= convert(PSComps[5..-1]-PSComps[1..-5],set):
    C5:= convert(PSComps[6..-1]-PSComps[1..-6],set):
    R:= convert(Comps,set) intersect C2 intersect C3 intersect C4 intersect C5:
    sort(convert(R,list)); # Robert Israel, Aug 17 2020
  • Mathematica
    CompositeNext[n_]:=Module[{k=n+1},While[PrimeQ[k],k++ ];k]; q=8!; lst2={};Do[If[ !PrimeQ[n],c=CompositeNext[n];a2=n+c;If[ !PrimeQ[a2],AppendTo[lst2,a2]]],{n,q}];lst2; lst3={};Do[If[ !PrimeQ[n],c1=CompositeNext[n];c2=CompositeNext[c1];a3=n+c1+c2;If[ !PrimeQ[a3],AppendTo[lst3,a3]]],{n,q}];lst3; lst4={};Do[If[ !PrimeQ[n],c1=CompositeNext[n];c2=CompositeNext[c1];c3=CompositeNext[c2];a4=n+c1+c2+c3;If[ !PrimeQ[a4],AppendTo[lst4,a4]]],{n,q}];lst4; lst5={};Do[If[ !PrimeQ[n],c1=CompositeNext[n];c2=CompositeNext[c1];c3=CompositeNext[c2];c4=CompositeNext[c3];a5=n+c1+c2+c3+c4;If[ !PrimeQ[a5],AppendTo[lst5,a5]]],{n,q}];lst5; Intersection[lst2,lst3,lst4,lst5] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2009 *)

Formula

Intersection of A151740, A151741, A151742 and A151743. - R. J. Mathar, Jun 17 2009

Extensions

Corrected and extended by Harvey P. Dale, Nov 25 2014
Corrected by Robert Israel, Aug 17 2020