cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151775 Triangle read by rows: T(n,k) = value of (d^2n/dx^2n) (tan^(2k)(x)/cos(x)) at the point x = 0.

Original entry on oeis.org

1, 1, 2, 5, 28, 24, 61, 662, 1320, 720, 1385, 24568, 83664, 100800, 40320, 50521, 1326122, 6749040, 13335840, 11491200, 3628800, 2702765, 98329108, 692699304, 1979524800, 2739623040, 1836172800, 479001600, 199360981, 9596075582
Offset: 0

Views

Author

N. J. A. Sloane, Jun 24 2009, at the suggestion of Alexander R. Povolotsky

Keywords

Comments

From Emeric Deutsch, Jun 27 2009: (Start)
T(n,0) = A000364(n), the Euler (or secant) numbers.
Sum of entries in row n = A000281(n).
(End)

Examples

			Triangle begins:
      1;
      1,       2;
      5,      28,      24;
     61,     662,    1320,      720;
   1385,   24568,   83664,   100800,    40320;
  50521, 1326122, 6749040, 13335840, 11491200, 3628800;
		

Crossrefs

A subtriangle of A008294.
Cf. A000364, A000281. [Emeric Deutsch, Jun 27 2009]

Programs

  • Maple
    A151775 := proc(n,k) if n= 0 then 1 ; else taylor( (tan(x))^(2*k)/cos(x),x=0,2*n+1) ; diff(%,x$(2*n)) ; coeftayl(%,x=0,0) ; fi; end: for n from 0 to 10 do for k from 0 to n do printf("%d ", A151775(n,k)) ; od: printf("\n") ; od: # R. J. Mathar, Jun 24 2009
    T := proc (n, k) if n = 0 and k = 0 then 1 elif n = 0 then 0 else simplify(subs(x = 0, diff(tan(x)^(2*k)/cos(x), `$`(x, 2*n)))) end if end proc: for n from 0 to 7 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form; Emeric Deutsch, Jun 27 2009
    # alternative Maple program:
    T:= (n, k)-> (2*n)!*coeff(series(tan(x)^(2*k)/cos(x), x, 2*n+1), x, 2*n):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Aug 06 2017
  • Mathematica
    T[n_, k_] := (2n)! SeriesCoefficient[Tan[x]^(2k)/Cos[x], {x, 0, 2n}];
    T[0, 0] = 1;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2019, after Alois P. Heinz *)

Extensions

More values from R. J. Mathar and Emeric Deutsch, Jun 24 2009