A151879 Produced by same formula that gives A000568 (unlabeled tournaments), but with LCM instead of GCD in the exponent.
1, 1, 1, 2, 8, 52, 528, 8632, 252928, 15494032, 2050181376, 525675623520, 239430803636224, 189133678584246592, 260786292437892272128, 638374284463941710477184, 2842966981002836533300953088, 23866119110542723640161098330368, 394851495657676102988098496313229312
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Programs
-
Mathematica
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_] := Sum[Sum[LCM[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]} ] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}]; oddp[v_] := (For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1); a[n_] := a[n] = (s = 0; Do[If[oddp[p] == 1, s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; s/n!); (* Jean-François Alcover, Nov 13 2017, after Andrew Howroyd *)
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, lcm(v[i], v[j]))) + sum(i=1, #v, v[i]\2)} oddp(v) = {for(i=1, #v, if(bitand(v[i], 1)==0, return(0))); 1} a(n) = {my(s=0); forpart(p=n, if(oddp(p), s+=permcount(p)*2^(edges(p)))); s/n!} \\ Andrew Howroyd, Feb 29 2020
-
Python
from math import prod, lcm, factorial from fractions import Fraction from itertools import product from sympy.utilities.iterables import partitions def A151879(n): return int(sum(Fraction(1<<(sum(p[r]*p[s]*lcm(r,s) for r,s in product(p.keys(),repeat=2))-sum(p.values())>>1),prod(q**p[q]*factorial(p[q]) for q in p)) for p in partitions(n) if all(q&1 for q in p))) # Chai Wah Wu, Jul 01 2024
Formula
a(n) = Sum_{j} (1/(Product (k^(j_k) (j_k)!))) * 2^{t_j}, where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc., and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s lcm(r,s) - Sum_{r} j_r ].