cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151879 Produced by same formula that gives A000568 (unlabeled tournaments), but with LCM instead of GCD in the exponent.

Original entry on oeis.org

1, 1, 1, 2, 8, 52, 528, 8632, 252928, 15494032, 2050181376, 525675623520, 239430803636224, 189133678584246592, 260786292437892272128, 638374284463941710477184, 2842966981002836533300953088, 23866119110542723640161098330368, 394851495657676102988098496313229312
Offset: 0

Views

Author

N. J. A. Sloane, Jul 21 2009

Keywords

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[LCM[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]} ] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
    oddp[v_] := (For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1);
    a[n_] := a[n] = (s = 0; Do[If[oddp[p] == 1, s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; s/n!); (* Jean-François Alcover, Nov 13 2017, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, lcm(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    oddp(v) = {for(i=1, #v, if(bitand(v[i], 1)==0, return(0))); 1}
    a(n) = {my(s=0); forpart(p=n, if(oddp(p), s+=permcount(p)*2^(edges(p)))); s/n!} \\ Andrew Howroyd, Feb 29 2020
    
  • Python
    from math import prod, lcm, factorial
    from fractions import Fraction
    from itertools import product
    from sympy.utilities.iterables import partitions
    def A151879(n): return int(sum(Fraction(1<<(sum(p[r]*p[s]*lcm(r,s) for r,s in product(p.keys(),repeat=2))-sum(p.values())>>1),prod(q**p[q]*factorial(p[q]) for q in p)) for p in partitions(n) if all(q&1 for q in p))) # Chai Wah Wu, Jul 01 2024

Formula

a(n) = Sum_{j} (1/(Product (k^(j_k) (j_k)!))) * 2^{t_j}, where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc., and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s lcm(r,s) - Sum_{r} j_r ].