A151920 a(n) = (Sum_{i=1..n+1} 3^wt(i))/3, where wt() = A000120().
1, 2, 5, 6, 9, 12, 21, 22, 25, 28, 37, 40, 49, 58, 85, 86, 89, 92, 101, 104, 113, 122, 149, 152, 161, 170, 197, 206, 233, 260, 341, 342, 345, 348, 357, 360, 369, 378, 405, 408, 417, 426, 453, 462, 489, 516, 597, 600, 609, 618, 645, 654, 681, 708, 789, 798, 825, 852, 933, 960
Offset: 0
Examples
n=3: (3^1+3^1+3^2+3^1)/3 = 18/3 = 6. n=18: the binary expansion of 18+1 is 10011, i.e., 19 = 2^4 + 2^1 + 2^0. The exponents of these powers of 2 (4, 1 and 0) reoccur as exponents in the powers of 4: a(19) = 3^0 * [(4^4 - 1) / 3 + 1] + 3^1 * [(4^1 - 1) / 3 + 1] + 3^2 * [(4^0 - 1)/3 + 1] = 1 * 86 + 3 * 2 + 9 * 1 = 101. - _David A. Corneth_, Mar 21 2015
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 31.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Mathematica
t = Nest[Join[#, # + 1] &, {0}, 14]; Table[Sum[3^t[[i + 1]], {i, 1, n}]/3, {n, 60}] (* Michael De Vlieger, Mar 21 2015 *)
-
PARI
a(n) = sum(i=1, n+1, 3^hammingweight(i))/3; \\ Michel Marcus, Mar 07 2015
-
PARI
a(n)={b=binary(n+1);t=#b;e=-1;sum(i=1,#b,e+=(b[i]==1);(b[i]==1)*3^e*((4^(#b-i)-1)/3+1))} \\ David A. Corneth, Mar 21 2015
Formula
a(n) = (A130665(n+1) - 1)/3. - Omar E. Pol, Mar 07 2015
a(n) = a(n-1) + 3^A000120(n+1)/3. - David A. Corneth, Mar 21 2015
Comments