A152005 Numbers whose square is the product of two distinct tetrahedral numbers A000292.
2, 140, 280, 1092, 166460, 189070, 665840, 804540, 845460, 34250920, 38336088, 133784560, 138535992, 225792840, 4998790160, 6301258040, 7559616818, 8367691640, 39991371446, 104637102152, 227490888350, 1497809326860, 296523233581822
Offset: 1
Examples
From _R. J. Mathar_, Jan 22 2009: (Start) 2 is in the sequence because 2^2 = 4*1 = T(2)*T(1). 140 is in the sequence 140^2 = 560*35 = T(14)*T(5) = 19600*1 = T(48)*T(1). 280 is in the sequence because 280^2 = 19600*4 = T(48)*T(2). 1092 is in the sequence because 1092^2 = 3276*364 = T(26)*T(12). (End)
Links
- Maciej Ulas, On certain Diophantine equations related to triangular and tetrahedral numbers, arXiv:0811.2477 [math.NT], 2008.
Programs
-
Mathematica
(* This program is not suitable to compute more than a dozen terms. *) terms = 12; imin = 1; imax = 3000; Union[Reap[Do[k2 = i(i+1)(i+2)/6 j(j+1)(j+2)/6; k = Sqrt[k2]; If[IntegerQ[k], Print[k]; Sow[k]], {i, imin, imax}, {j, i+1, imax}]][[2, 1]]][[1 ;; terms]] (* Jean-François Alcover, Oct 31 2018 *)
Formula
a(n) = T(i)*T(j) where T(k) = A000292(k) = C(k+2,3) = k*(k+1)*(k+2)/6.
Extensions
Sequence replaced by sequence with no intermediate terms missing by R. J. Mathar, Jan 22 2009
a(15)-a(18) from Donovan Johnson, Jan 24 2009
a(19)-a(23) from Donovan Johnson, Jan 11 2012
Comments