A152012 Indices of Fibonacci numbers having exactly one primitive prime factor.
3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 45, 47, 48, 51, 52, 54, 56, 60, 62, 63, 65, 66, 72, 74, 75, 76, 82, 83, 93, 94, 98, 105, 106, 108, 111, 112, 119, 121, 122, 123, 124, 125, 131
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..392
Programs
-
Mathematica
primitivePrimeFactors[n_] := Cases[FactorInteger[Fibonacci[n]][[All, 1]], p_ /; And @@ (GCD[p, #] == 1 & /@ Array[Fibonacci, n-1])]; Reap[For[n=3, n <= 200, n++, If[Length[primitivePrimeFactors[n]] == 1, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Dec 12 2014 *)
-
PARI
isok(pf, vp) = sum(i=1, #pf, vecsearch(vp, pf[i]) == 0) == 1; lista(nn) = {vp = []; for (n=3, nn, pf = factor(fibonacci(n))[,1]; if (isok(pf, vp), print1(n, ", ")); vp = vecsort(concat(vp, pf),, 8););} \\ Michel Marcus, Nov 29 2014
Comments