cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152046 a(n) = Product_{k=1..floor((n-1)/2)} (1 + 8*cos(k*Pi/n)^2) for n >= 0.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531, 5726623061, 11453246123
Offset: 0

Views

Author

Roger L. Bagula, Nov 21 2008

Keywords

Comments

Apparently the same as A001045 after the first term. - R. J. Mathar, Nov 27 2008 [This conjecture is true. - Peter Luschny, Nov 28 2019]

Crossrefs

Cf. A001045.

Programs

  • Mathematica
    a[n_] := Product[(1 + 8 Cos[k Pi/n]^2), {k, 1, Floor[(n - 1)/2]}];
    Table[Round[a[n]], {n, 0, 20}]
  • PARI
    Vec((1 - 2*x^2) / ((1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Nov 28 2019
    
  • PARI
    apply( {A152046(n)=2^n\/3+!n}, [0..40]) \\ M. F. Hasler, Feb 13 2020

Formula

From Sergei N. Gladkovskii, May 22 2013 and Sep 09 2013: (Start)
G.f.: 1 + A(x) where A(x) is the g.f. of A001045.
G.f.: 1 + Q(0)/3, where Q(k)= 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction).
G.f.: 1+ Q(0)*x/2 , where Q(k) = 1 + 1/(1 - x*(2*k+1 + 2*x)/( x*(2*k+2 + 2*x) + 1/Q(k+1) )); (continued fraction). (End)
From Colin Barker, Nov 28 2019: (Start)
a(n) = a(n-1) + 2*a(n-2) for n>2.
a(n) = ((-1)^(1 + n) + 2^n)/ 3 for n>0. (End)
E.g.f.: (3 - exp(-x) + exp(2*x))/3. - Stefano Spezia, Feb 13 2020

Extensions

Edited by Peter Luschny, Nov 28 2019