cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152063 Triangle read by rows. Coefficients of the Fibonacci product polynomials F(n) = Product_{k=1..(n - 1)/2} (1 + 4*cos^2(k*Pi/n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 5, 1, 6, 8, 1, 8, 19, 13, 1, 9, 25, 21, 1, 11, 42, 65, 34, 1, 12, 51, 90, 55, 1, 14, 74, 183, 210, 89, 1, 15, 86, 234, 300, 144, 1, 17, 115, 394, 717, 654, 233, 6, 18, 130, 480, 951, 954, 377, 1, 20, 165, 725, 1825, 2622, 1985, 610, 1, 21, 183, 855
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 22 2008

Keywords

Comments

The triangle A125076 is formed by reading upward sloping diagonals. - Gary W. Adamson, Nov 26 2008
Bisection of the triangle: odd-indexed rows are reversals of the rows of A126124, even-indexed rows are the reversals of the rows of A123965. - Gary W. Adamson, Aug 15 2010

Examples

			First few rows of the triangle are:
1;
1;
1, 2;
1, 3;
1, 5, 5;
1, 6, 8;
1, 8, 19, 13;
1, 9, 25, 21;
1, 11, 42, 65, 34;
1, 12, 51, 90, 55;
1, 14, 74, 183, 210, 89;
1, 15, 86, 234, 300, 144;
1, 17, 115, 394, 717, 654, 233;
1, 18, 130, 480, 951, 954, 377;
1, 20, 165, 725, 1825, 2622, 1985, 610;
1, 21, 183, 855, 2305, 3573, 2939, 987;
...
By row, alternate signs (+,-,+,-,...) with descending exponents. Rows with n terms have exponents (n-1), (n-2), (n-3),...;
Example: There are two rows with 4 terms corresponding to the polynomials
x^3 - 8x^2 + 19x - 13 (roots associated with the heptagon); and
x^3 - 9x^2 + 25x - 21 (roots associated with the 9-gon (nonagon)).
		

Crossrefs

Programs

  • Maple
    P := proc(n) option remember; if n < 5 then return
    ifelse(n < 3, 1, ifelse(n = 3, 1 + 2*q, 1 + 3*q)) fi;
    (1 + 3*q)*P(n - 2) - q^2*P(n - 4) end:
    T := n -> local k; seq(coeff(P(n), q, k), k = 0..(n-1)/2):
    for n from 1 to 12 do T(n) od;  # (after F. Chapoton)  Peter Luschny, May 27 2024
    # Alternative:
    P := n -> local k; add(binomial(n-k,k)*(1+x)^(floor(n/2)-k)*x^k, k=0..floor(n/2)):
    T := n -> local k; seq(coeff(P(n), x, k), k = 0..n/2):
    for n from 0 to 12 do T(n) od; # (after F. Chapoton) Peter Luschny, May 28 2024

Formula

Recurrence (as monic polynomials) P(n+4) = (1 + 3*q)*P(n+2) - q^2*P(n). - F. Chapoton, May 27 2024
As monic polynomials, these are the numerators of the polynomials from A011973 evaluated at 1/(1+q). - F. Chapoton, May 28 2024