cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A355234 Decimal expansion of Li_2(-1/2), the dilogarithm of (-1/2) (negated).

Original entry on oeis.org

4, 4, 8, 4, 1, 4, 2, 0, 6, 9, 2, 3, 6, 4, 6, 2, 0, 2, 4, 4, 3, 0, 6, 4, 4, 0, 5, 9, 1, 5, 7, 7, 4, 3, 2, 0, 8, 3, 4, 2, 6, 9, 9, 4, 1, 3, 4, 9, 1, 9, 9, 1, 2, 8, 5, 0, 1, 7, 4, 6, 3, 7, 1, 3, 1, 6, 8, 2, 4, 3, 7, 2, 2, 5, 5, 7, 2, 0, 3, 1, 2, 3, 8, 9, 8, 6, 5, 1, 6, 5, 1, 8, 6, 6, 5, 3, 3, 1, 0, 6, 6, 9, 0, 2, 8
Offset: 0

Views

Author

Amiram Eldar, Jun 25 2022

Keywords

Examples

			-0.44841420692364620244306440591577432083426994134919...
		

Crossrefs

Other values of Li_2: A072691, A076788, A152115, A242599, A242600.

Programs

  • Mathematica
    RealDigits[PolyLog[2, -1/2], 10, 100][[1]]
  • PARI
    -dilog(-1/2) \\ Michel Marcus, Jun 25 2022

Formula

From Shamos (2011):
Equals -Li_2(1/3) - log(3/2)^2/2.
Equals Li_2(2/3) + log(3)^2/2 - log(2)^2/2 - Pi^2/6.
Equals Li_2(1/4)/2 + log(2)^2/2 - Pi^2/12.
Equals -Sum_{k>=1} (-1)^(k+1)/(2^k*k^2) = -Sum_{k>=1} (-1)^(k+1)/A007758(k).
Equals -Sum_{k>=1} H(k)/(k*3^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
Equals -Integral_{x=0..1} log(x)^2/(x+2)^2 dx.
Equals -Integral_{x>=1} log(x)^2/(2*x+1)^2 dx.
Equals Integral_{x=0..1} log(x)/(x+2) dx.
Equals -Integral_{x>=0} log(1 + exp(-x)/2) dx.

A242599 Decimal expansion of dilog(phi-1) = polylog(2, 2-phi) with phi = (1 + sqrt(5))/2.

Original entry on oeis.org

4, 2, 6, 4, 0, 8, 8, 0, 6, 1, 6, 2, 0, 9, 6, 1, 8, 2, 0, 9, 2, 0, 3, 6, 9, 9, 5, 4, 2, 6, 8, 7, 7, 3, 1, 5, 6, 7, 1, 1, 7, 3, 6, 1, 0, 4, 3, 3, 4, 2, 0, 5, 0, 4, 2, 7, 8, 9, 2, 2, 0, 6, 3, 0, 5, 8, 2, 0, 7, 6, 4, 2, 5, 9, 4, 3, 1, 8, 5, 3, 6, 5, 4, 8, 3, 9, 7, 0, 1, 3, 1, 6, 1, 5, 1, 5, 0, 8, 7, 0, 6, 5, 8, 5, 8, 5, 5
Offset: 0

Views

Author

Wolfdieter Lang, Jun 16 2014

Keywords

Comments

dilog(phi-1) = polylog(2, 2-phi) = sum((2-phi)^k/k^2 , k =1 ..infinity) = sum((1 - 2*sin(Pi/10))^(2*k)/k^2, k=1..infinity) = Pi^2/15 - (log(phi-1))^2 = Pi^2/15 - (2/5)*log(phi-1)*(log(2-phi) + log(phi-1)/2).
See the Jolley reference pp. 66-69, (360)(e), and the Abramowitz-Stegun link, p. 1004, eqs. 27.7.3 - 27.7.6 with x = phi-1, solving for dilog(x) = f(x).

Examples

			0.42640880616209618209...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.

Crossrefs

Cf. A152115, A076788 (dilog(1/2)), A242600.

Programs

  • Maple
    phi := (1+sqrt(5))/2 ; dilog(phi-1) ; evalf(%) ; # R. J. Mathar, Jun 10 2024
  • Mathematica
    RealDigits[PolyLog[2, 2 - GoldenRatio], 10, 120][[1]] (* Amiram Eldar, May 27 2023 *)
  • PARI
    polylog(2, 2 - (1+sqrt(5))/2) \\ Gheorghe Coserea, Sep 30 2018
    
  • PARI
    sumpos(k=1, (1 - 2*sin(Pi/10))^k/k^2) \\ Gheorghe Coserea, Sep 30 2018

Formula

dilog(phi-1) = polylog(2, 2-phi) = Sum_{k>=1} (2-phi)^k/k^2 = Sum_{k>=1} (1 - 2*sin(Pi/10))^k/k^2.

A242600 Decimal expansion of -dilog(phi) = -polylog(2, 1-phi) with phi = (1 + sqrt(5))/2.

Original entry on oeis.org

5, 4, 2, 1, 9, 1, 2, 1, 6, 4, 5, 0, 6, 9, 3, 3, 7, 8, 3, 4, 0, 5, 0, 1, 5, 3, 1, 0, 4, 2, 6, 4, 3, 6, 9, 5, 6, 7, 9, 3, 7, 6, 7, 8, 5, 4, 5, 8, 0, 6, 9, 9, 3, 9, 6, 8, 6, 5, 7, 2, 6, 7, 7, 4, 0, 3, 1, 0, 5, 3, 1, 5, 3, 7, 7, 7, 9, 9, 4, 4, 3, 0, 4, 0, 9, 2, 4, 2, 8, 6, 7, 0, 4, 7, 0, 9, 2, 8, 4, 5, 9, 3, 7, 3, 0, 1, 3
Offset: 1

Views

Author

Wolfdieter Lang, Jun 16 2014

Keywords

Comments

This solution for -Sum_{k>=1} (-2*sin(Pi/10)^k/k^2) should also have been mentioned in the Jolley reference pp. 66-69 under (360).

Examples

			0.542191216450693...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.

Crossrefs

Cf. A001622, A076788 (polylog(2,1/2)), A152115, A242599.

Programs

  • Mathematica
    RealDigits[PolyLog[2, 1 - GoldenRatio], 10, 120][[1]] (* Amiram Eldar, May 30 2023 *)

Formula

Equals -Sum_{k>=1} (1-phi)^k/k^2 = Pi^2/15 - (log(phi-1)^2)/2, with the golden section phi = (1 + sqrt(5))/2. See the Abramowitz-Stegun link, p. 1004, eqs. 27.7.3 - 27.7.6 with x = phi-1, solving for -dilog(x+1) = -f(1+x), using log(2-phi) = 2*log(phi-1).
Showing 1-3 of 3 results.