cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152118 a(n) = Product_{k=1..floor((n-1)/2)} (4 + 4*cos(k*Pi/n)^2).

Original entry on oeis.org

1, 1, 1, 5, 6, 29, 35, 169, 204, 985, 1189, 5741, 6930, 33461, 40391, 195025, 235416, 1136689, 1372105, 6625109, 7997214, 38613965, 46611179, 225058681, 271669860, 1311738121, 1583407981, 7645370045, 9228778026, 44560482149, 53789260175, 259717522849
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Nov 24 2008

Keywords

Comments

Product_{k=1..floor((n-1)/2)} (m + 4*cos(k*Pi/n)^2) for m=1,2,3,4 respectively give A000045, A002530, A136211 and this sequence.
Apparently the same as A041011 after the initial term. - R. J. Mathar, Nov 27 2008

Crossrefs

Cf. A041011 (essentially the same).

Programs

  • Maple
    with(combinat); a := n -> `if`(n = 0, 1, fibonacci(n, 2)/2^((n + 1) mod 2)); seq(a(n), n = 0 .. 31); # Miles Wilson, Aug 04 2024
  • Mathematica
    a = Table[Product[4 + 4*Cos[k*Pi/n]^2, {k, 1, (n - 1)/2}], {n, 0, 30}]; FullSimplify[ExpandAll[a]] Round[%]
    Join[{1}, LinearRecurrence[{0, 6, 0, -1}, {1, 1, 5, 6}, 20]] (* G. C. Greubel, Mar 28 2016 *)
  • PARI
    a(n) = round(prod(k=1, (n-1)/2, 4 + 4*cos(k*Pi/n)^2)) \\ Colin Barker, Oct 23 2013
    
  • PARI
    Vec((x^4-x^3-5*x^2+x+1)/((x^2-2*x-1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, Mar 28 2016

Formula

From Colin Barker, Oct 23 2013: (Start)
a(n) = 6*a(n-2)-a(n-4) for n>4.
G.f.: (x^4-x^3-5*x^2+x+1) / ((x^2-2*x-1)*(x^2+2*x-1)). (End)
a(n) = ((-(-1 - sqrt(2))^n - 3*(1-sqrt(2))^n + (-1+sqrt(2))^n + 3*(1+sqrt(2))^n)) / (8*sqrt(2)) for n>0. - Colin Barker, Mar 28 2016
E.g.f.: (1/(2*sqrt(2)))*(2*sqrt(2) + (2*cosh(x) + sinh(x))*sinh(sqrt(2)*x)). - G. C. Greubel, Mar 28 2016