cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152133 Maximal length of rook tour on an n X n+2 board.

Original entry on oeis.org

4, 16, 38, 78, 136, 220, 330, 474, 652, 872, 1134, 1446, 1808, 2228, 2706, 3250, 3860, 4544, 5302, 6142, 7064, 8076, 9178, 10378, 11676, 13080, 14590, 16214, 17952, 19812, 21794, 23906, 26148, 28528, 31046, 33710, 36520, 39484, 42602, 45882
Offset: 1

Views

Author

R. J. Mathar, Mar 22 2009

Keywords

References

  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 76.

Crossrefs

Programs

  • Magma
    I:=[4,16,38,78,136]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 11 2012
  • Mathematica
    LinearRecurrence[{3,-2,-2,3,-1},{4,16,38,78,136},40] (* Harvey P. Dale, Dec 16 2011 *)

Formula

G.f.: -2*x*(-2-2*x+x^2-2*x^3+x^4)/(1+x)/(x-1)^4.
a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
a(n) = 2*n^3/3+2*n^2+n/3+3/2+(-1)^n/2. [R. J. Mathar, Oct 20 2009]