cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A152132 Maximal length of rook tour on an n X n+1 board.

Original entry on oeis.org

2, 8, 24, 54, 104, 174, 270, 396, 558, 756, 996, 1282, 1620, 2010, 2458, 2968, 3546, 4192, 4912, 5710, 6592, 7558, 8614, 9764, 11014, 12364, 13820, 15386, 17068, 18866, 20786, 22832, 25010, 27320, 29768, 32358, 35096, 37982, 41022, 44220, 47582
Offset: 1

Views

Author

R. J. Mathar, Mar 22 2009

Keywords

References

  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 76.

Crossrefs

Programs

  • Magma
    I:=[2, 8, 24, 54, 104, 174, 270]; [n le 7 select I[n] else 3*Self(n-1) - 3*Self(n-2) + Self(n-3) + Self(n-4) - 3*Self(n-5) + 3*Self(n-6)- Self(n-7): n in [1..50]]; // Vincenzo Librandi, Dec 14 2012
  • Maple
    # Figure 43 of the Gardner book:
    C := proc(n,m)
    if type(m,even) and type(n,even) then
    2 ;
    elif type(m,odd) and type(n,odd) then
    1 ;
    elif type(m,even) and type(n,odd) and type(floor(n/2),even) then
    3/2 ;
    elif type(m,even) and type(n,odd) and type(floor(n/2),odd) then
    1/2 ;
    elif type(m,odd) and type(n,even) and type(floor(n/2),even) then
    0 ;
    elif type(m,odd) and type(n,even) and type(floor(n/2),odd) then
    1 ;
    fi;
    end:
    # formula for n X m boards, from the Gardner book:
    T := proc(n,m)
    n*(3*m^2+n^2-10)/6+C(n,m) ;
    end:
    for n from 1 to 24 do
    m := n+3 ; # third diagonal here, for example
    printf("%d,",T(n,m)) ;
    od:
  • Mathematica
    CoefficientList[Series[-2 * (-1 - x - 2*x^3 - 2*x^4 - 3*x^2 + x^5)/(1 + x)/(x^2 + 1)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 14 2012 *)

Formula

G.f.: -2*x*(-1-x-2*x^3-2*x^4-3*x^2+x^5)/(1+x)/(x^2+1)/(x-1)^4.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-4) -3*a(n-5) +3*a(n-6) -a(n-7).
a(n) = 2*n^3/3+n^2-7*n/6+3/4-(-1)^n/4-A087960(n)/2.

Extensions

More terms from R. J. Mathar, Sep 22 2009

A152133 Maximal length of rook tour on an n X n+2 board.

Original entry on oeis.org

4, 16, 38, 78, 136, 220, 330, 474, 652, 872, 1134, 1446, 1808, 2228, 2706, 3250, 3860, 4544, 5302, 6142, 7064, 8076, 9178, 10378, 11676, 13080, 14590, 16214, 17952, 19812, 21794, 23906, 26148, 28528, 31046, 33710, 36520, 39484, 42602, 45882
Offset: 1

Views

Author

R. J. Mathar, Mar 22 2009

Keywords

References

  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 76.

Crossrefs

Programs

  • Magma
    I:=[4,16,38,78,136]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 11 2012
  • Mathematica
    LinearRecurrence[{3,-2,-2,3,-1},{4,16,38,78,136},40] (* Harvey P. Dale, Dec 16 2011 *)

Formula

G.f.: -2*x*(-2-2*x+x^2-2*x^3+x^4)/(1+x)/(x-1)^4.
a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
a(n) = 2*n^3/3+2*n^2+n/3+3/2+(-1)^n/2. [R. J. Mathar, Oct 20 2009]

A152135 Maximal length of rook tour on an n X n+4 board.

Original entry on oeis.org

12, 36, 74, 134, 216, 328, 470, 650, 868, 1132, 1442, 1806, 2224, 2704, 3246, 3858, 4540, 5300, 6138, 7062, 8072, 9176, 10374, 11674, 13076, 14588, 16210, 17950, 19808, 21792, 23902, 26146, 28524, 31044, 33706, 36518, 39480, 42600, 45878
Offset: 1

Views

Author

R. J. Mathar, Mar 22 2009

Keywords

References

  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 76.

Crossrefs

Programs

  • Magma
    I:=[12, 36, 74, 134, 216]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 11 2012
  • Mathematica
    LinearRecurrence[{3, -2, -2, 3, -1}, {12, 36, 74, 134, 216}, 40] (* Vincenzo Librandi, Dec 11 2012 *)

Formula

G.f.: -2*x*(-6+5*x^2-4*x^3+x^4)/(1+x)/(x-1)^4.
From R. J. Mathar, May 13 2010: (Start)
a(n) = +3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
a(n) = 19*n/3+3/2+2*n^3/3+4*n^2+(-1)^n/2. (End)
Showing 1-3 of 3 results.