cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152152 a(n) = Product_{k=1..n} (1 + 4*sin(2*Pi*k/n)^2).

Original entry on oeis.org

0, 1, 1, 16, 25, 121, 256, 841, 2025, 5776, 14641, 39601, 102400, 271441, 707281, 1860496, 4862025, 12752041, 33362176, 87403801, 228765625, 599074576, 1568239201, 4106118241, 10749542400, 28143753121, 73680216481, 192900153616
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Nov 26 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1-Lucas(n)+(-1)^n)^2: n in [0..30]]; // G. C. Greubel, Mar 13 2019
    
  • Mathematica
    Table[(1 + Fibonacci[n] - 2*Fibonacci[n+1] + (-1)^n)^2, {n, 0, 30}]
  • PARI
    {a(n) = (1-fibonacci(n-1)-fibonacci(n+1)+(-1)^n)^2}; \\ G. C. Greubel, Mar 13 2019
    
  • Sage
    [(1-lucas_number2(n,1,-1)+(-1)^n)^2 for n in (0..30)] # G. C. Greubel, Mar 13 2019

Formula

a(n) = Product_{k=1..n} (1 + 4*sin(2*Pi*k/n)^2).
a(n) = (1 + Fibonacci(n) - 2*Fibonacci(n + 1) + (-1)^n)^2.
G.f.: -x*(x^6 -2*x^5 +10*x^4 -14*x^3 +10*x^2 -2*x +1)/((x -1)*(x +1)*(x^2 -3*x +1)*(x^2 -x -1)*(x^2 +x -1)). - Colin Barker, Apr 13 2014
a(n) = A001350(n)^2. - Colin Barker, Apr 13 2014
a(n) = (1 + (-1)^n - Lucas(n))^2. - G. C. Greubel, Mar 13 2019