A152155
Minimal residues of Pepin's Test for Fermat Numbers using the base 3.
Original entry on oeis.org
0, -1, -1, -1, -1, 10324303, -6586524273069171148, 110780954395540516579111562860048860420, 5864545399742183862578018016183410025465491904722516203269973267547486512819
Offset: 0
Dennis Martin (dennis.martin(AT)dptechnology.com), Nov 27 2008
a(4) = 3^(32768) (mod 65537) = 65536 = -1 (mod F(4)), therefore F(4) is prime.
a(5) = 3^(2147483648) (mod 4294967297) = 10324303 (mod F(5)), therefore F(5) is composite.
- M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001, pp. 42-43.
-
f:= proc(n) local F;
F:= 2^(2^n) + 1;
`mods`(3 &^ ((F-1)/2), F)
end proc:
seq(f(n), n=0..10); # Robert Israel, Dec 19 2016
-
a(n)=centerlift(Mod(3,2^(2^n)+1)^(2^(2^n-1))) \\ Jeppe Stig Nielsen, Dec 19 2016
A152154
Positive residues of Pepin's Test for Fermat numbers using either 5 or 10 for the base.
Original entry on oeis.org
2, 0, 16, 256, 65536, 3484838166, 17225898269543404863, 6964187975677595099156927503004398881, 14553806122642016769237504145596730952769427034161327480375008633175279343120
Offset: 0
Dennis Martin (dennis.martin(AT)dptechnology.com), Nov 27 2008
a(4) = 5^(32768) (mod 65537) = 65536 = -1 (mod F(4)), therefore F(4) is prime.
a(5) = 5^(2147483648) (mod 4294967297) = 3484838166 (mod F(5)), therefore F(5) is composite.
- M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001, pp. 42-43.
A152156
Minimal residues of Pepin's Test for Fermat Numbers using either 5 or 10 for the base.
Original entry on oeis.org
-1, 0, -1, -1, -1, -810129131, -1220845804166146754, 6964187975677595099156927503004398881, 14553806122642016769237504145596730952769427034161327480375008633175279343120
Offset: 0
Dennis Martin (dennis.martin(AT)dptechnology.com), Nov 27 2008
a(4) = 5^(32768) (mod 65537) = 65536 = -1 (mod F(4)), therefore F(4) is prime.
a(5) = 5^(2147483648) (mod 4294967297) = -810129131 (mod F(5)), therefore F(5) is composite.
- M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001, pp. 42-43.
Showing 1-3 of 3 results.
Comments