A152155 Minimal residues of Pepin's Test for Fermat Numbers using the base 3.
0, -1, -1, -1, -1, 10324303, -6586524273069171148, 110780954395540516579111562860048860420, 5864545399742183862578018016183410025465491904722516203269973267547486512819
Offset: 0
Keywords
Examples
a(4) = 3^(32768) (mod 65537) = 65536 = -1 (mod F(4)), therefore F(4) is prime. a(5) = 3^(2147483648) (mod 4294967297) = 10324303 (mod F(5)), therefore F(5) is composite.
References
- M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001, pp. 42-43.
Links
- Dennis Martin, Table of n, a(n) for n = 0..11
- Chris Caldwell, The Prime Pages: Pepin's Test.
Programs
-
Maple
f:= proc(n) local F; F:= 2^(2^n) + 1; `mods`(3 &^ ((F-1)/2), F) end proc: seq(f(n), n=0..10); # Robert Israel, Dec 19 2016
-
PARI
a(n)=centerlift(Mod(3,2^(2^n)+1)^(2^(2^n-1))) \\ Jeppe Stig Nielsen, Dec 19 2016
Formula
a(n) = 3^((F(n) - 1)/2) (mod F(n)), where F(n) is the n-th Fermat Number, using the symmetry mod (so (-F(n)-1)/2 < a(n) < (F(n)-1)/2).
Comments