A152157 Triangle read by rows: T(n,k) (n>=0, 0<=k<=n) = number of partitions of 2n+1 into 2k+1 odd parts.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 3, 2, 1, 1, 1, 5, 5, 3, 2, 1, 1, 1, 7, 7, 5, 3, 2, 1, 1, 1, 8, 10, 7, 5, 3, 2, 1, 1, 1, 10, 13, 11, 7, 5, 3, 2, 1, 1, 1, 12, 18, 15, 11, 7, 5, 3, 2, 1, 1, 1, 14, 23, 21, 15, 11, 7, 5, 3, 2, 1, 1, 1, 16, 30, 28, 22, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0
Examples
Triangle begins: 1 1 1 1 1 1 1 2 1 1 1 3 2 1 1 1 4 3 2 1 1 1 5 5 3 2 1 1 1 7 7 5 3 2 1 1 1 8 10 7 5 3 2 1 1 1 10 13 11 7 5 3 2 1 1 1 12 18 15 11 7 5 3 2 1 1 1 14 23 21 15 11 7 5 3 2 1 1 1 16 30 28 22 15 11 7 5 3 2 1 1 1 19 37 38 30 22 15 11 7 5 3 2 1 1 1 21 47 49 41 30 22 15 11 7 5 3 2 1 1 1 24 57 65 54 42 30 22 15 11 7 5 3 2 1 1 1 27 70 82 73 56 42 30 22 15 11 7 5 3 2 1 1 1 30 84 105 94 76 56 42 30 22 15 11 7 5 3 2 1 1 1 33 101 131 123 99 77 56 42 30 22 15 11 7 5 3 2 1 1 1 37 119 164 157 131 101 77 56 42 30 22 15 11 7 5 3 2 1 1 From _Wolfdieter Lang_, Jul 09 2012 (Start) T(5,1) = 4 from the four partitions of 11 into 3 parts, all of which are odd: [1,1,9], [1,3,7], [1,5,5] and [3,3,5]. T(5,1) = 4 from the four partitions of 7 = 5+1+1 into 3 parts: [1,1,5], [1,2,4], [1,3,3] and [2,2,3]. (End)
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1/sqrt(x), `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, expand(sqrt(x)*b(n-i, i))))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2*n+1, 2*n+1)): seq(T(n), n=0..12); # Alois P. Heinz, Jun 21 2021
-
Mathematica
(* p = A008284 *) p[n_, 1] = 1; p[n_, k_] := p[n, k] = If[n >= k, Sum[p[n - i, k - 1], {i, 1, n - 1}] - Sum[p[n - i, k], {i, 1, k - 1}], 0]; T[n_, k_] := p[n + k + 1, 2 k + 1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 28 2019, after Wolfdieter Lang *)
Formula
T(n,k) = A152140(2n+1,2k+1).
T(n,k) = p(n+k+1,2*k+1), n >= 0, k >= 0, with p(N,M)= A008284(N,M), the number of partitions of N into M parts. See the sketch of the proof given above as a comment. - Wolfdieter Lang, Jul 09 2012
O.g.f. for column k: (x^k)/product(1-x^j,j=1..(2*k+1)), k>=0.
From the o.g.f.s of A008284. - Wolfdieter Lang, Jul 10 2012
Extensions
Indices corrected by R. J. Mathar, Jul 09 2012
Comments